Giải bài 22 trang 104 sách bài tập toán 11 - Cánh diều

2024-09-14 13:10:12

Đề bài

Cho tứ diện \(ABCD\). Gọi \(G\) là trọng tâm của tam giác \(ACD\), điểm \(M\) nằm trên cạnh \(AB\) sao cho \(AM = 2MB\). Đường thẳng \(MG\) song song với mặt phẳng:

A. \(\left( {ACD} \right)\)                          

B. \(\left( {ABD} \right)\)                 

C. \(\left( {BCD} \right)\)             

D. \(\left( {ABC} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng dấu hiệu nhận biết đường thẳng song song với mặt phẳng.

Lời giải chi tiết

Do \(AM = 2MB \Rightarrow \frac{{AM}}{{AB}} = \frac{2}{3}\).

Gọi \(E\) là trung điểm của \(CD\). Do \(G\) là trọng tâm tam giác \(ACD\), ta suy ra ba điểm \(A\), \(G\), \(E\) thẳng hàng và \(\frac{{AG}}{{AE}} = \frac{2}{3}\).

Tam giác \(ABE\) có \(\frac{{AM}}{{AB}} = \frac{{AG}}{{AE}}\) nên theo định lí Thales đảo, \(GM\parallel BE\).

Mà \(BE \subset \left( {BCD} \right)\), ta suy ra \(GM\parallel \left( {BCD} \right)\).

Đáp án đúng là C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"