Giải bài 56 trang 118 sách bài tập toán 11 - Cánh diều

2024-09-14 13:10:32

Đề bài

Cho mặt phẳng \(\left( P \right)\), ba điểm \(A\), \(B\), \(C\) không thẳng hàng và không nằm trên \(\left( P \right)\). Chứng minh rằng nếu ba đường thẳng \(AB\), \(BC\), \(CA\) cắt mặt phẳng \(\left( P \right)\) lần lượt tại các điểm \(M\), \(N\), \(P\) thì \(M\), \(N\), \(P\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Chứng minh rằng 3 điểm \(M\), \(N\), \(P\) cùng thuộc giao tuyến của \(\left( P \right)\) và \(\left( {ABC} \right)\).

Lời giải chi tiết

Do ba điểm \(A\), \(B\), \(C\) không thẳng hàng, nên tồn tại một mặt phẳng \(\left( Q \right)\) đi qua 3 điểm này.

Vì \(M \in AB\), mà \(AB \subset \left( Q \right)\) nên \(M \in \left( Q \right)\). Mặt khác, do \(M \in \left( P \right)\) nên hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) có điểm chung. Từ đó ta suy ra tồn tại giao tuyến của  \(\left( P \right)\) và \(\left( Q \right)\), và \(M\) nằm trên giao tuyến này.

Chứng minh tương tự, ta cũng suy ra \(N\) và \(P\) cũng nằm trên giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\). Do đó, ba điểm \(M\), \(N\), \(P\) thẳng hàng.

Bài toán được chứng minh.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"