Đề bài
Cho hai biến cố độc lập A và B cùng liên quan đến một phép thử thoả mãn \(P\left( A \right) = 0,2\) và \(P\left( B \right) = 0,3.\)
Tính xác suất của các biến cố: \(\bar A,\bar B,A \cap B,\bar A \cap B,A \cap \bar B\) và \(\bar A \cap \bar B.\)
Phương pháp giải - Xem chi tiết
Sử dụng các quy tắc tính xác suất.
Lời giải chi tiết
Ta có: \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,2 = 0,8.\)
\(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,3 = 0,7.\)
Biến cố A và B độc lập \( \Rightarrow P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right) = 0,2.0,3 = 0,06.\)
\(\begin{array}{l}P\left( {\bar A \cap B} \right) = P\left( {\bar A} \right).P\left( B \right) = 0,8.0,3 = 0,24.\\P\left( {A \cap \bar B} \right) = P\left( A \right).P\left( {\bar B} \right) = 0,2.0,7 = 0,14.\\P\left( {\bar A \cap \bar B} \right) = P\left( {\bar A} \right).P\left( {\bar B} \right) = 0,8.0,7 = 0,56.\end{array}\)