Đề bài
Một câu lạc bộ cờ của trường có 10 bạn, trong đó có 4 bạn biết chơi cờ tướng, 6 bạn biết chơi cờ vua, mỗi bạn chỉ biết chơi một loại cờ. Nhà trường chọn ngẫu nhiên 4 bạn để tham gia buổi giao lưu cờ giữa các học sinh trong thành phố. Tính xác suất của biến cố “Trong 4 bạn được chọn, có ít nhất một bạn biết chơi cờ tướng, ít nhất một bạn biết chơi cờ vua”.
Phương pháp giải - Xem chi tiết
- Xác định số phần tử của không gian mẫu.
- Xác định số phần tử của các biến cố.
Lời giải chi tiết
Mỗi cách chọn ngẫu nhiên 4 bạn từ 10 bạn học sinh cho ta một tổ hợp chập 4 của 10 phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 4 của 10 phần tử và \(n\left( \Omega \right) = C_{10}^4 = 210.\)
Xét biến cố A: “Trong 4 bạn được chọn, có ít nhất một bạn biết chơi cờ tướng, ít nhất một bạn biết chơi cờ vua”.
Có 3 trường hợp có thể xảy ra của biến cố A.
+ Trường hợp 1: Trong 4 bạn được chọn, có 1 bạn biết chơi cờ tướng, 3 bạn biết chơi cờ vua. Suy ra số cách chọn: \(C_4^1.C_6^3.\)
+ Trường hợp 2: Trong 4 bạn được chọn, có 2 bạn biết chơi cờ tướng, 2 bạn biết chơi cờ vua. Suy ra số cách chọn: \(C_4^2.C_6^2.\)
+ Trường hợp 3: Trong 4 bạn được chọn, có 3 bạn biết chơi cờ tướng, 1 bạn biết chơi cờ vua. Suy ra số cách chọn: \(C_4^3.C_6^1.\)
Suy ra \(n\left( A \right) = C_4^1.C_6^3 + C_4^2.C_6^2 + C_4^3.C_6^1 = 194.\)
Xác suất của biến cố “Trong 4 bạn được chọn, có ít nhất một bạn biết chơi cờ tướng, ít nhất một bạn biết chơi cờ vua” là:
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{194}}{{210}} = \frac{{97}}{{105}}.\)