Đề bài
Xác định các giá trị của số thực a thỏa mãn:
a) \({a^{\frac{1}{2}}} > {a^{\sqrt 3 }};\)
b) \({a^{ - \frac{3}{2}}} < {a^{\frac{2}{3}}};\)
c) \({\left( {\sqrt 2 } \right)^a} > {\left( {\sqrt 3 } \right)^a}.\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất:
- Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha > \beta .\)
- Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha < \beta .\)
- Cho \(0 < a < b,{\rm{ }}\alpha \) là một số thực. Ta có:
\({a^\alpha } < {b^\alpha } \Leftrightarrow \alpha > 0;{\rm{ }}{a^\alpha } > {b^\alpha } \Leftrightarrow \alpha < 0.\)
Lời giải chi tiết
a) Do \(\frac{1}{2} < \sqrt 3 \) và \({a^{\frac{1}{2}}} > {a^{\sqrt 3 }} \Rightarrow 0 < a < 1.\)
b) Do \( - \frac{3}{2} < \frac{2}{3}\) và \({a^{ - \frac{3}{2}}} < {a^{\frac{2}{3}}} \Rightarrow a > 1.\)
c) Do \(\sqrt 2 < \sqrt 3 \) và \({\left( {\sqrt 2 } \right)^a} > {\left( {\sqrt 3 } \right)^a} \Rightarrow a < 0.\)