Đề bài
Nếu \({\left( {2 - \sqrt 3 } \right)^{a - 1}} < 2 + \sqrt 3 \) thì:
A. \(a > 0.\)
B. \(a > 1.\)
C. \(a < 1.\)
D. \(a < 0.\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất: Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha < \beta .\)
Lời giải chi tiết
Ta có: \(0 < 2 - \sqrt 3 < 1\)
Theo đề bài:
\(\begin{array}{l}{\left( {2 - \sqrt 3 } \right)^{a - 1}} < 2 + \sqrt 3 \Leftrightarrow {\left( {2 - \sqrt 3 } \right)^{a - 1}} < \frac{1}{{2 - \sqrt 3 }} \Leftrightarrow {\left( {2 - \sqrt 3 } \right)^{a - 1}} < {\left( {2 - \sqrt 3 } \right)^{ - 1}}\\ \Leftrightarrow a - 1 > - 1 \Leftrightarrow a > 0.\end{array}\)
Đáp án A.