Giải bài 30 trang 39 sách bài tập toán 11 - Cánh diều

2024-09-14 13:10:48

Đề bài

a) Cho \({\log _2}3 = a.\) Tính \({\log _{18}}72\) theo \(a.\)

b)  Cho \(\log 2 = a.\) Tính \({\log _{20}}50\) theo \(a.\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của logarit để tính giá trị biểu thức.

Lời giải chi tiết

a) Ta có:

\({\log _{18}}72 = \frac{{{{\log }_2}72}}{{{{\log }_2}18}} = \frac{{{{\log }_2}({2^3}{{.3}^2})}}{{{{\log }_2}({{2.3}^2})}} = \frac{{{{\log }_2}{2^3} + {{\log }_2}{3^2}}}{{{{\log }_2}2 + {{\log }_2}{3^2}}} = \frac{{3 + 2{{\log }_2}3}}{{1 + 2{{\log }_2}3}} = \frac{{3 + 2a}}{{1 + 2a}}.\)

b) Ta có:

\({\log _{20}}50 = \frac{{\log 50}}{{\log 20}} = \frac{{\log \left( {{{10}^2}{{.2}^{ - 1}}} \right)}}{{\log \left( {2.10} \right)}} = \frac{{\log {{10}^2} + \log {2^{ - 1}}}}{{\log 2 + \log 10}} = \frac{{2 - \log 2}}{{\log 2 + 1}} = \frac{{2 - a}}{{a + 1}}.\)                    

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"