Giải bài 64 trang 51 sách bài tập toán 11 - Cánh diều

2024-09-14 13:11:03

Đề bài

Giải mỗi bất phương trình sau:

a) \({\log _{\frac{1}{2}}}\left( {2x - 6} \right) <  - 3;\)

b) \({\log _3}\left( {{x^2} - 2x + 2} \right) > 0;\)

c) \({\log _4}\left( {2{x^2} + 3x} \right) \ge \frac{1}{2};\)

d) \({\log _{0,5}}\left( {x - 1} \right) \ge {\log _{0,5}}\left( {5 - 2x} \right);\)

e) \(\log \left( {{x^2} + 1} \right) \le \log \left( {x + 3} \right);\)

g)\({\log _{\frac{1}{5}}}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0.\)

Phương pháp giải - Xem chi tiết

- Tìm điều kiện cho bất phương trình.

- Giải bất phương trình  bằng cách đưa về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.

Lời giải chi tiết

a) Điều kiện: \(2x - 6 > 0 \Leftrightarrow x > 3.\)

 \({\log _{\frac{1}{2}}}\left( {2x - 6} \right) <  - 3 \Leftrightarrow 2x - 6 > {\left( {\frac{1}{2}} \right)^{ - 3}} \Leftrightarrow 2x - 6 > 8 \Leftrightarrow x > 7\left( {TM} \right).\)

b) Điều kiện: \({x^2} - 2x + 2 > 0 \Leftrightarrow {\left( {x - 1} \right)^2} + 1 > 0\) đúng \(\forall x \in \mathbb{R}.\)

\(\begin{array}{l}{\log _3}\left( {{x^2} - 2x + 2} \right) > 0 \Leftrightarrow {x^2} - 2x + 2 > {3^0} \Leftrightarrow {x^2} - 2x + 2 > 1 \Leftrightarrow {x^2} - 2x + 1 > 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} > 0 \Leftrightarrow x \ne 1.\end{array}\)

c)  Điều kiện: \(2{x^2} + 3x > 0 \Leftrightarrow x\left( {2x + 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x <  - \frac{3}{2}\end{array} \right.\)

 \({\log _4}\left( {2{x^2} + 3x} \right) \ge \frac{1}{2} \Leftrightarrow 2{x^2} + 3x \ge {4^{\frac{1}{2}}} \Leftrightarrow 2{x^2} + 3x \ge 2 \Leftrightarrow 2{x^2} + 3x - 2 \ge 0\)

\( \Leftrightarrow \left( {2x - 1} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow  - 2 \le x \le \frac{1}{2}.\)

Kết hợp với điều kiện xác định suy ra nghiệm của bất phương trình là:

\(0 < x \le \frac{1}{2}\) và \( - 2 \le x <  - \frac{3}{2}.\)

d) \({\log _{0,5}}\left( {x - 1} \right) \ge {\log _{0,5}}\left( {5 - 2x} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 1 \le 5 - 2x\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x > 1\end{array} \right. \Leftrightarrow 1 < x \le 2.\)

Vậy nghiệm của bất phương trình là: \(\left( {1;2} \right].\)

e) \(\log \left( {{x^2} + 1} \right) \le \log \left( {x + 3} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 1 \le x + 3\\{x^2} + 1 > 0\end{array} \right. \Leftrightarrow {x^2} - x - 2 \le 0\)

\( \Leftrightarrow \left( {x - 2} \right)\left( {x + 1} \right) \le 0 \Leftrightarrow  - 1 \le x \le 2.\)

Vậy nghiệm của bất phương trình là: \(\left[ {1;2} \right].\)

g) \({\log _{\frac{1}{5}}}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0 \Leftrightarrow  - {\log _5}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0\)

\( \Leftrightarrow lo{g_5}\left( {x - 4} \right) > {\log _5}\left( {{x^2} - 6x + 8} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 4 > {x^2} - 6x + 8\\{x^2} - 6x + 8 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 7x + 12 < 0\\{x^2} - 6x + 8 > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 3} \right)\left( {x - 4} \right) < 0\\\left( {x - 2} \right)\left( {x - 4} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 < x < 4\\\left[ \begin{array}{l}x > 4\\x < 2\end{array} \right.\end{array} \right. \Leftrightarrow {\rm{He\"a  vo\^a  nghie\"a m}}{\rm{.}}\)

Suy ra bất phương trình vô nghiệm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"