Giải bài 23 trang 74 sách bài tập toán 11 - Cánh diều

2024-09-14 13:11:16

Đề bài

Cho hàm số \(y = \frac{{x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) trong mỗi trường hợp sau:

a) \(d\) song song với đường thẳng \(y = 5x - 2;\)

b) \(d\) vuông góc với đường thẳng \(y =  - 20x + 1;\)

Phương pháp giải - Xem chi tiết

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)

Lời giải chi tiết

Ta có: \(y' = \frac{{x + 2 - \left( {x - 3} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{5}{{{{\left( {x + 2} \right)}^2}}}.\)

a) Vì tiếp tuyến đó song song với đường thẳng \(y = 5x - 2\) nên tiếp tuyến có hệ số góc \(k = 5.\)

Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.

\( \Rightarrow y'\left( {{x_0}} \right) = 5 \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = 5 \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} =  - 1\\{x_0} =  - 3\end{array} \right.\)

Với \({x_0} =  - 1 \Rightarrow \) tiếp điểm \({M_1}\left( { - 1; - 4} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( { - 1; - 4} \right)\) là:

\(y = f'\left( { - 1} \right)\left( {x + 1} \right) + f\left( { - 1} \right) \Leftrightarrow y = 5\left( {x + 1} \right) - 4 \Leftrightarrow y = 5x + 1.\)

Với \({x_0} =  - 3 \Rightarrow \) tiếp điểm \({M_2}\left( { - 3;6} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 3;6} \right)\) là:

\(y = f'\left( { - 3} \right)\left( {x + 3} \right) + f\left( { - 3} \right) \Leftrightarrow y = 5\left( {x + 3} \right) + 6 \Leftrightarrow y = 5x + 21.\)

b) Vì tiếp tuyến đó vuông góc với đường thẳng \(y =  - 20x + 1\) nên tiếp tuyến có hệ số góc \(k = \frac{1}{{20}}.\)

Gọi \(N\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.

\( \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{20}} \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = \frac{1}{{20}} \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 100 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 8\\{x_0} =  - 12\end{array} \right.\)

Với \({x_0} = 8 \Rightarrow \) tiếp điểm \({M_1}\left( {8;\frac{1}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( {8;\frac{1}{2}} \right)\) là:\(y = f'\left( 8 \right)\left( {x - 8} \right) + f\left( 8 \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x - 8} \right) + \frac{1}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{1}{{10}}.\)

Với \({x_0} =  - 12 \Rightarrow \) tiếp điểm \({M_2}\left( { - 12;\frac{3}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 12;\frac{3}{2}} \right)\) là:

\(y = f'\left( { - 12} \right)\left( {x + 12} \right) + f\left( { - 12} \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x + 12} \right) + \frac{3}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{{21}}{{10}}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"