Giải bài 1 trang 88 sách bài tập toán 11 - Cánh diều

2024-09-14 13:11:28

Đề bài

Cho hình lăng trụ \(ABC.A'B'C'\) có \(ABC\) là tam giác đều và \(ABB'A'\) là hình chữ nhật. Gọi M là trung điểm của BC (Hình 4).

a) Số đo giữa hai đường thẳng \(AB\) và \(B'C'\) bằng:

A. \({30^0}.\)

B. \({45^0}.\)

C. \({60^0}.\)

D. \({90^0}.\)

b) Số đo giữa hai đường thẳng \(AB\) và \(CC'\) bằng:

A. \({30^0}.\)

B. \({45^0}.\)

C. \({60^0}.\)

D. \({90^0}.\)

c) Số đo giữa hai đường thẳng \(AM\) và \(A'C'\) bằng:

A. \({30^0}.\)

B. \({45^0}.\)

C. \({60^0}.\)

D. \({90^0}.\)

Phương pháp giải - Xem chi tiết

Dựa vào các cách xác định góc giữa hai đường thẳng đã học để làm.

Lời giải chi tiết

a) Do \(ABC\) là tam giác đều nên \(\widehat {ABC} = {60^0}.\)

Ta có: \(BC\)// \(B'C'\) nên \(\left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^0}.\)

Đáp án C.

b) Do \(ABB'A'\) là hình chữ nhật nên \(\widehat {ABB'} = {90^0}.\)

Ta có: \(BB'\)// \(CC'\) nên \(\left( {AB,CC'} \right) = \left( {AB,BB'} \right) = \widehat {ABB'} = {90^0}.\)

Đáp án D.

c) Do \(ABC\) là tam giác đều nên \(\widehat {MAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}{.60^0} = {30^0}.\)

Ta có: \(AC\)// \(A'C'\) nên \(\left( {AM,A'C'} \right) = \left( {AM,AC} \right) = \widehat {MAC} = {30^0}.\)

Đáp án A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"