Giải bài 20 trang 95 sách bài tập toán 11 - Cánh diều

2024-09-14 13:11:30

Đề bài

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right).\) Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA. Chứng minh rằng \(SA \bot \left( {MNP} \right).\)

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Lời giải chi tiết

Gọi H, K, I lần lượt là trung điểm của AB, BC, CA.

Theo giả thiết ta có: \(\frac{{SM}}{{SH}} = \frac{{SN}}{{SK}} = \frac{{SP}}{{SI}} = \frac{2}{3}.\)

Theo định lý Ta-lét: Trong tam giác SHK có \(MN{\rm{ // }}HK,\) trong tam giác SHI có \(MP{\rm{ // }}HI.\) Mà \(HK \subset \left( {ABC} \right),{\rm{ }}HI \subset \left( {ABC} \right)\) nên \(MN{\rm{ // }}\left( {ABC} \right),{\rm{ }}MP{\rm{ // }}\left( {ABC} \right).\)Mà, MN, MP cắt nhau trong mặt phẳng (MNP) nên \(\left( {MNP} \right){\rm{ // }}\left( {ABC} \right).\)

Ta lại có, \(SA \bot \left( {ABC} \right).\) Vậy \(SA \bot \left( {MNP} \right).\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"