Giải bài 12 trang 94 sách bài tập toán 11 - Cánh diều

2024-09-14 13:11:35

Đề bài

Cho hình chóp S.ABC có \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {90^0}.\)Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(SH \bot \left( {ABC} \right).\)

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Lời giải chi tiết

Gọi AN, CM là hai đường cao của tam giác ABC.

Gọi H là giao điểm của AN và CM.

Theo giả thiết, \(SA \bot SB,{\rm{ }}SA \bot SC\) mà \(SB \cap SC = S\) nên \(SA \bot \left( {SBC} \right)\) mà \(BC \subset \left( {SBC} \right) \Rightarrow SA \bot BC.\)

Ngoài ra, \(AH \bot BC\) và SA, AH cắt nhau trong mặt phẳng (SAH) nên \(BC \bot \left( {SAH} \right) \Rightarrow BC \bot SH.\)

Tương tự, ta có: \(AB \bot SH.\)

Bên cạnh đó, AB, BC cắt nhau trong mặt phẳng (ABC) nên \(SH \bot \left( {ABC} \right).\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"