Giải bài 1 trang 19 Sách bài tập Toán 6 - Chân trời sáng tạo

2024-09-14 15:25:08

Đề bài

Chọn câu sai:

a) \({11.4^4} + 16\) chia hết cho 4 nên chia hết cho 2;

b) 24 . 8 – 17 chia hết cho 3;

c) \(136.3 - {2.3^4}\) chia hết cho 9;

d) Tích của ba số tự nhiên liên tiếp chia hết cho 2, cho 3.

Phương pháp giải - Xem chi tiết

Cách 1: Tính kết quả của biểu thức ra số cụ thể hoặc phân tích biểu thức thành tích.

Cách 2: Sử dụng dấu hiệu chia hết hoặc các tính chất chia hết của tổng, hiệu

Lời giải chi tiết

a) Ta có: \({11.4^4} + 16 = {4.11.4^3} + 4.4 = 4\left( {{{11.4}^3} + 4} \right) \vdots 4\), do đó \({11.4^4} + 16\) chia hết cho 4, hiển nhiên cũng chia hết cho 2. Vậy a) đúng.

b) Ta có: \(24.8 - 17 = 192 - 17 = 175\) có tổng các chữ số là \(1 + 7 + 5 = 13\) \(\not{ \vdots }\) 3.

Vậy 175 hay (24 . 8 – 17) \(\not{ \vdots }\) 3. => b) sai

c) Ta có: \(136.3 - {2.3^4} = 136.3 - 2.81 = 408 - 162 = 246\),

Mà 246 có tổng các chữ số là 2+4+6=12 \(\not{ \vdots }\) 9 nên 246 hay \(136.3 - {2.3^4}\) \(\not{ \vdots }\) 9.

Vậy c) sai.

d) Giả sử 3 số tự nhiên liên tiếp lần lượt là n, n+1, n+2 (\(n \in \mathbb{N}\))

Xét tích: A = n.(n+1).(n+2)

+) Nếu n = 0: ta suy ra A = 0, vậy A chia hết cho 2 và chia hết cho 3.

+) Nếu \(n \ne 0\)

Vì trong 2 số tự nhiên liên tiếp n và n+1 luôn có một số chẵn, chẳng hạn n, ta viết n = 2q

\( \Rightarrow n(n + 1)(n + 2) = 2.q.(n + 1)(n + 2) \vdots 2\)

Vậy A luôn chia hết cho 2. (1)

Tương tự, trong 3 số tự nhiên liên tiếp ta luôn tìm được một số chia hết cho 3, chẳng hạn (n+2)

Ta viết: n+2 = 3p

\( \Rightarrow A = n(n + 1)(n + 2) = n.(n + 1).3p \vdots 3\)

Vậy A luôn chia hết cho 3.  (2)

Từ (1,2) ta kết luận: Tích của ba số tự nhiên liên tiếp chia hết cho 2, cho 3 => d) đúng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"