Giải Bài 75 trang 25 sách bài tập Toán 6 - Cánh diều

2024-09-14 15:28:48

Đề bài

Chứng tỏ rằng:

a)     Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2;

b)    1111 +2222+ 3333 +4444+5555 không chia hết cho 2;

c)     2 +22+23+…+259+260+561 chia hết cho 5

Phương pháp giải - Xem chi tiết

Tồng 2 số lẻ bất kì là số chẵn

Tích 2 số lẻ bất kì là 1 số lẻ

Tích 1 số chẵn với số bất kì là số chẵn

Tính 2 +22+23+…+259+260 , tổng này chia hết cho 5

Lời giải chi tiết

a)     Vì tổng 2 số lẻ bất kì là số chẵn nên tổng của 2 020 số lẻ bất kì là số chẵn

Vậy tổng của 2 020 số lẻ bất kì luôn chia hết cho 2

b)    Vì tích 2 số lẻ bất kì là số lẻ nên 1111; 3333; 5555 là các số lẻ. Do đó tổng 1111+ 3333+5555 cũng là số lẻ.

Vì tích 2 số chẵn là số chẵn nên 2222; 4444 là số chẵn. Do đó, tổng 2222 + 4444 là số chẵn.

Vậy tổng 1111 +2222+ 3333 +4444+5555 là 1 số lẻ nên không chia hết cho 2

c)     Ta có: 2 +22+23+…+259+260

= (2+22+23+24) + (25+26+27+28) +…+ (257 + 258+259+260)

= (2+22+23+24) + 24. (2+22+23+24) +…+ 256. (2+22+23+24)

= (2+22+23+24). (1 +24+…+ 256)

=30. (1 +24+…+ 256)

Vì 30 chia hết cho 5 nên 30. (1 +24+…+ 256) cũng chia hết cho 5.

Do đó 2 +22+23+…+259+260 chia hết cho 5

Mà 561 cũng chia hết cho 5 nên 2 +22+23+…+259+260+561 chia hết cho 5

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"