Giải Bài 68 trang 88 sách bài tập Toán 6 - Cánh diều

2024-09-14 15:29:46

Đề bài

a)     Có tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5 hay không?

b)    Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp.

Phương pháp giải - Xem chi tiết

Xét các trường hợp của n khi chia cho 5

Lời giải chi tiết

a)     + Nếu n chia hết cho 5 thì n2 + n+ 2 chia cho 5 dư 2 ( vì n và n2 chia hết cho 5; 2 chia cho 5 dư 2).

+ Nếu n chia cho 5 dư 1 thì n2 + n+ 2 chia cho 5 dư 4 ( vì n và n2 chia cho 5 đều dư 1; 2 chia cho 5 dư 2).

+ Nếu n chia cho 5 dư 2 thì n2 + n+ 2 chia cho 5 dư 3 ( vì n chia cho 5 dư 2; n2 chia cho 5 dư 4 ; 2 chia cho 5 dư 2)

+ Nếu n chia cho 5 dư 3 thì n2 + n+ 2 chia cho 5 dư 4 ( vì n chia cho 5 dư 3;  n2 chia cho 5 dư 4; 2 chia cho 5 dư 2)

+ Nếu n chia cho 5 dư 4 thì n2 + n+ 2 chia cho 5 dư 2 ( vì n chia cho 5 dư 4 ; n2 chia cho 5 dư 1; 2 chia cho 5 dư 2)

Vậy không tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5

b)    n = a + (a+1) + (a+2) + (a+3) + (a+4) = 5a + 10 chia hết cho 5

n = b + (b+1) + (b+2) + (b+3) + (b+4) + (b+5) + (b+6) = 7b +21 chia hết cho 7

Nên n chia hết cho cả 5 và 7.

Mà n là số tự nhiên nhỏ nhất , n lớn hơn 0

Vậy n = 35

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"