Giải bài 22 trang 92 sách bài tập Toán 6 – Cánh Diều Tập 2

2024-09-14 15:31:42

Đề bài

Cho n điểm phân biệt, trong đó có đúng 7 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng. Cứ qua 2 điểm ta vẽ được một đường thẳng. Có tất cả 211 đường thẳng. Tính n.

Phương pháp giải - Xem chi tiết

Với m điểm phân biệt, trong đó không có 3 điểm nào thằng hàng thì số các đường thẳng kẻ được là \(\frac{{m.(m - 1)}}{2}\)

Lời giải chi tiết

Với m điểm phân biệt, trong đó không có 3 điểm nào thằng hàng thì số các đường thẳng kẻ được là \(\frac{{m.(m - 1)}}{2}\)

Gọi số điểm cần tìm là n (\(n \in N\)). Nếu không có 3 điểm nào thẳng hàng thì số các đường thẳng kẻ được là \(\dfrac{n.(n-1)}{2}\). Nếu trong 7 điểm không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 7 điểm đó là \(\dfrac{7.6}{2} = 21\). Nếu 7 điểm thẳng hàng thì số đường thẳng là 1.

Với n điểm phân biệt, trong đó có 7 điểm thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm ta có số đường thẳng là:

\(\frac{{n(n - 1)}}{2} - 21 + 1 = \frac{{n(n - 1)}}{2} - 20\)

Mà \(\frac{{n(n - 1)}}{2} - 20 = 211 \Rightarrow n(n - 1) = 462 = 22.21\)

Vậy \(n = 22\)

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"