Phân số nghịch đảo của phân số \(\frac{1}{3}\) là
- A \(3\).
- B \( - \frac{1}{3}\).
- C \( - 3\).
- D \(1\).
Đáp án : A
Phân số nghịch đảo của phân số \(\frac{a}{b}\) là \(\frac{b}{a}\) \(\left( {\frac{a}{b}.\frac{b}{a} = 1} \right)\)
Phân số nghịch đảo của phân số \(\frac{1}{3}\) là \(3\).
Đáp án A.
Khẳng định nào sau đây đúng?
- A \( - \frac{2}{7} > \frac{1}{7}\).
- B \(\frac{2}{7} < \frac{1}{7}\).
- C \(\frac{2}{7} = - \frac{1}{7}\).
- D \(\frac{2}{7} > \frac{1}{7}\).
Đáp án : D
So sánh hai phân số cùng mẫu.
Ta có \( - 2 < 1\) nên \(\frac{{ - 2}}{7} < \frac{1}{7}\) (A sai).
\(2 > 1\) nên \(\frac{2}{7} > \frac{1}{7}\) (B sai).
\(2 \ne - 1\) nên \(\frac{2}{7} \ne - \frac{1}{7}\) (C sai)
\(2 > 1\) nên \(\frac{2}{7} > \frac{1}{7}\) (D đúng)
Đáp án D.
Cho \(\frac{3}{4}x = 1\frac{2}{3}\). Kết quả giá trị x là:
- A \(\frac{{20}}{9}\).
- B \(\frac{5}{4}\).
- C \(\frac{{29}}{{12}}\).
- D \(\frac{{11}}{{12}}\).
Đáp án : A
Sử dụng quy tắc tính với phân số.
\(\begin{array}{l}\frac{3}{4}x = 1\frac{2}{3}\\\frac{3}{4}x = \frac{5}{3}\\x = \frac{5}{3}:\frac{3}{4}\\x = \frac{{20}}{9}\end{array}\)
Đáp án A.
Cho a, b, m là các số nguyên, m khác 0. Tổng \(\frac{a}{m} + \frac{b}{m}\) bằng
- A \(\frac{{a + b}}{{m + m}}\).
- B \(\frac{{a + b}}{{m.m}}\).
- C \(\frac{{a + b}}{m}\).
- D \(a + b\).
Đáp án : C
Dựa vào quy tắc cộng hai phân số cùng mẫu.
\(\frac{a}{m} + \frac{b}{m} = \frac{{a + b}}{m}\)
Đáp án C.
Trong các cách viết sau, cách viết nào cho ta một số thập phân âm?
- A \(2,37\).
- B \(\frac{2}{3}\).
- C \(1\frac{5}{{26}}\).
- D \( - 3,25\).
Đáp án : D
Số thập phân âm là số nhỏ hơn 0.
Số thập phân âm là \( - 3,25\).
Đáp án D.
Số đối của số thập phân -3,7 là:
- A -3,7.
- B 3,7.
- C -7,3.
- D 7,3.
Đáp án : B
Số đối của số a là – a.
Số đối của số thập phân -3,7 là 3,7.
Đáp án B.
Làm tròn số 12,643 đến hàng đơn vị ta được số
- A 12,6.
- B 13.
- C 12.
- D 12,64.
Đáp án : B
Dựa vào kiến thức làm tròn số.
Làm tròn số 12,643 đến hàng đơn vị ta được số 13.
Đáp án B.
Tỉ số phần trăm của 1 và 4 là
- A
\(75\% .\)
- B \(50\% .\)
- C
\(25\% .\)
- D \(14\% .\)
Đáp án : C
Tỉ số phần trăm của a và b là \(\frac{a}{b}.100\% \).
Tỉ số phần trăm của 1 và 4 là: \(\frac{1}{4}.100\% = 25\% \).
Đáp án C.
Cho hình vẽ: Điểm thuộc đường thẳng d là:
- A Điểm E và B.
- B Điểm C và F.
- C Điểm F và B.
- D Điểm A, E và C.
Đáp án : D
Quan sát hình vẽ để trả lời.
Điểm thuộc đường thẳng d là A, E, C.
Đáp án D.
Cho hình vẽ, chọn khẳng định đúng trong các khẳng định sau:
- A Ba điểm A, F, E thẳng hàng.
- B Ba điểm A, B, C thẳng hàng.
- C Ba điểm A, E, C thằng hàng.
- D Ba điểm E, B, C thẳng hàng.
Đáp án : C
Ba điểm cùng thuộc một đường thẳng thì thẳng hàng.
Vì A, E, C nằm trên đường thẳng d nên chúng thẳng hàng.
Đáp án C.
Hình nào sau đây vẽ đoạn thẳng \(AB\)?
- A Hình 2.
- B Hình 3.
- C Hình 4.
- D Hình 1.
Đáp án : B
Dựa vào kiến thức về đoạn thẳng.
Hình vẽ đoạn thẳng AB là hình 3.
Đáp án B.
Cho \(I\) là trung điểm của đoạn thẳng \(AB\). Biết \(AB = 10cm\), số đo của đoạn thẳng \(IB\) là
- A 4cm.
- B 5cm.
- C 6cm.
- D 20cm.
Đáp án : B
Dựa vào kiến thức về trung điểm của đoạn thẳng.
Vì I là trung điểm của AB nên AI = IB = \(\frac{1}{2}\)AB = \(\frac{1}{2}\).10 = 5(cm).
Đáp án B.
Thực hiện các phép tính sau (tính hợp lý nếu có thể).
a) \(\frac{{ - 2}}{{11}} + \frac{{ - 9}}{{11}}\)
b) \(\frac{1}{2} - \frac{{ - 3}}{4}\)
c) \(\frac{{12}}{{11}} - \frac{{ - 7}}{{19}} + \frac{{12}}{{19}}\)
d) \(\frac{{ - 5}}{7} \cdot \frac{2}{{11}} + \frac{{ - 5}}{7} \cdot \frac{9}{{11}} + \frac{5}{7}\)
Dựa vào quy tắc tính với phân số.
a) \(\frac{{ - 2}}{{11}} + \frac{{ - 9}}{{11}} = \frac{{ - 2 + ( - 9)}}{{11}} = \frac{{ - 11}}{{11}} = - 1\)
b) \(\frac{1}{2} - \frac{{ - 3}}{4} = \frac{{1.2}}{{2.2}} - \frac{{ - 3}}{4} = \frac{2}{4} - \frac{{ - 3}}{4} = \frac{{2 - ( - 3)}}{4} = \frac{5}{4}.\)
c) \(\frac{{12}}{{11}} - \frac{{ - 7}}{{19}} + \frac{{12}}{{19}}\) \( = \frac{{12}}{{11}} + \frac{7}{{19}} + \frac{{12}}{{19}}\) \( = \frac{{12}}{{11}} + \left( {\frac{7}{{19}} + \frac{{12}}{{19}}} \right)\) \( = \frac{{12}}{{11}} + 1\) \( = \frac{{12}}{{11}} + \frac{{11}}{{11}}\) \( = \frac{{23}}{{11}}.\)
d) \(\frac{{ - 5}}{7} \cdot \frac{2}{{11}} + \frac{{ - 5}}{7} \cdot \frac{9}{{11}} + \frac{5}{7} = \frac{{ - 5}}{7}\left( {\frac{2}{{11}} + \frac{9}{{11}}} \right) + \frac{5}{7} = \frac{{ - 5}}{7} \cdot 1 + \frac{5}{7} = 0\)
Tìm \(x\), biết:
a) \(2,5 + x = 3,75\)
b) \(6,72 - x = ( - 12,6) + 6,3\)
Dựa vào quy tắc tính với số thập phân.
a) \(2,5 + x = 3,75\)
\(x = 3,75 - 2,5\)
\(x = 1,25\)
Vậy \(x = 1,25\)
b) \(6,72 - x = ( - 12,6) + 6,3\)
\(6,72 - x = - 6,3\)
\(x = 6,72 + 6,3\)
\(x = 13,02\)
Vậy x = 13,02.
Lớp 6A có 42 học sinh xếp loại kết quả học tập trong học kỳ I bao gồm ba loại: Tốt, khá và đạt. Số học sinh tốt chiếm \(\frac{1}{7}\) số học sinh cả lớp, số học sinh khá bằng \(\frac{2}{3}\) số học sinh còn lại.
a) Tính số học sinh mỗi loại của lớp?
b) Tính tỉ số phần trăm của số học sinh tốt và khá so với số học sinh cả lớp?
a) Tính số học sinh tốt, học sinh khá theo số học sinh cả lớp
Số học sinh đạt bằng số học sinh cả lớp trừ đi số học sinh tốt và học sinh khá.
b) Tính tổng số học sinh tốt và khá : số học sinh cả lớp . 100%.
a) Số học sinh tốt là: \(42.\frac{1}{7} = 6\)( học sinh)
Số học sinh khá là: \((42 - 6).\frac{2}{3} = 24\)(học sinh)
Số học sinh đạt là : \(42 - 6 - 24 = 12\)(học sinh)
b) Tỉ số % giữa học sinh tốt và khá so với cả lớp là:
\(\frac{{6 + 24}}{{42}}.100\% = 71,4\% \)
Vậy số học sinh tốt, khá, đạt lần lượt là 6; 24; 12 học sinh.
Tỉ số phần trăm giữa học sinh tốt và khá so với cả lớp là 71,4%.
Trên tia Bx lấy hai điểm A và C sao cho BA = 2cm , BC = 3cm
a) Trong ba điểm C, A, B điểm nào nằm giữa hai điểm còn lại? Tính AC?
b) Trên tia đối của tia Bx lấy điểm O sao cho BO = BC = B có phải là trung điểm của OC không? Vì sao?
a) So sánh BA với BC để xác định điểm nằm giữa.
b) Chứng minh B nằm giữa O và C và BO = BC nên B là trung điểm của OC.
a) Trên tia Bx ta có BA = 2cm, BC = 3cm vì 2 < 3 nên BA < BC, vậy, A nằm giữa B và C.
Khi đó ta có : BA + AC = BC suy ra \(AC = BC - BA\) suy ra \(AC = 3 - 2 = 1\)
Vậy AC = 1cm.
b) Ta có O thuộc tia đối của tia Bx, nên O và C nằm khác phía đối với B hay B nằm giữa O và C.
Khi đó: OB + BC = OC. (1)
Mà theo đề bài: BO = BC = 3cm (2)
Từ (1) và (2), suy ra B là trung điểm của OC.
Tính \(S = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)\left( {1 - \frac{1}{{{4^2}}}} \right)\left( {1 - \frac{1}{{{5^2}}}} \right)\left( {1 - \frac{1}{{{6^2}}}} \right)...\left( {1 - \frac{1}{{{{99}^2}}}} \right)\).
Rút gọn A, biến đổi các phân số trong A để rút gọn.
\(\begin{array}{l}S = \left( {1 - \frac{1}{4}} \right).\left( {1 - \frac{1}{9}} \right).\left( {1 - \frac{1}{{16}}} \right).\left( {1 - \frac{1}{{25}}} \right)\left( {1 - \frac{1}{{36}}} \right)...\left( {1 - \frac{1}{{9901}}} \right)\\ = \frac{3}{4} \cdot \frac{8}{9} \cdot \frac{{15}}{{16}} \cdot \frac{{24}}{{25}} \cdot \frac{{35}}{{36}} \cdots \frac{{9800}}{{99}}\\ = \frac{{1.3}}{{2.2}} \cdot \frac{{2.4}}{{3.3}} \cdot \frac{{3.5}}{{4.4}} \cdot \frac{{4.6}}{{5.5}} \cdot \frac{{5.7}}{{6.6}} \cdots \frac{{98.100}}{{99.99}}\\ = \frac{{1.2.3.4.5...98}}{{2.3.4.5.6...99}} \cdot \frac{{3.4.5.6.7...100}}{{2.3.4.5.6...99}}\\ = \frac{1}{{99}} \cdot \frac{{100}}{2}\\ = \frac{{50}}{{99}} \cdot \end{array}\)
Vậy \(S = \frac{{50}}{{99}}\).