Cách viết nào sau đây không phải phân số?
- A \(\frac{3}{{ - 4}}\)
- B \( - \frac{3}{7}\)
- C \(\frac{{2,5}}{3}\)
- D \(\frac{{ - 11}}{{ - 17}}\)
Đáp án : C
Phân số có dạng \(\frac{a}{b}\) với \(a,b \in \mathbb{Z},b \ne 0\).
\(\frac{{2,5}}{3}\) không phải là phân số vì \(2,5 \notin \mathbb{Z}\).
Đáp án C.
Số đối của phân số \(\frac{{ - 15}}{{16}}\) là
- A \(\frac{{16}}{{15}}\)
- B \(\frac{{15}}{{16}}\)
- C \(\frac{{15}}{{ - 16}}\)
- D \(\frac{{ - 16}}{{15}}\)
Đáp án : B
Hai phân số được gọi là đối nhau nếu tổng của chúng bằng 0.
Vì \(\frac{{ - 15}}{{16}} + \frac{{15}}{{16}} = 0\) nên \(\frac{{15}}{{16}}\) là số đối của phân số \(\frac{{ - 15}}{{16}}\).
Đáp án B.
Số nguyên \(x\) thỏa mãn điều kiện \(\frac{x}{3} = \frac{6}{{ - 9}}\) là
- A -1
- B - 2
- C 2
- D 6
Đáp án : B
Hai phân số \(\frac{a}{b} = \frac{c}{d}\left( {b,d \ne 0} \right)\) nếu \(a.d = c.b\)
\(\begin{array}{l}\frac{x}{3} = \frac{6}{{ - 9}}\\x.\left( { - 9} \right) = 6.3\\ - 9x = 18\\x = - 2\end{array}\)
Đáp án B.
Tỉ số phần trăm của 16 và 20 là
- A \(0,8\% \)
- B \(8\% \)
- C \(16\% \)
- D \(80\% \)
Đáp án : D
Tỉ số phần trăm của a và b là \(\frac{a}{b}.100\% \).
Tỉ số phần trăm của 16 và 20 là \(\frac{{16}}{{20}}.100 = 0,8.100\% = 80\% \).
Đáp án D.
Nam mua một quyển sách có giá bìa là 50000 đồng. Khi trả tiền được cửa hàng giảm giá \(10\% \). Hỏi Nam mua quyển sách đó hết bao nhiêu tiền?
- A 400000
- B 55000
- C 5000
- D 45000
Đáp án : D
m% của a là \(m\% .a\).
Vì cửa hàng giảm giá 10% nên số tiền Nam trả ứng với:
100% - 10% = 90%.
Vậy Nam mua quyển sách đó hết:
\(90\% .50000 = 45000\) (đồng)
Đáp án D.
Làm tròn số 131,2956 đến hàng phần trăm được kết quả là
- A 131,30
- B 131,31
- C 131,29
- D 130
Đáp án : A
Dựa vào kiến thức làm tròn số.
Số 131,2956 làm tròn đến hàng phần trăm ta được 131,30.
Đáp án A.
Biết \(\frac{3}{5}\) của một số bằng (-30), số đó là
- A 18
- B -18
- C -50
- D 50
Đáp án : C
Biết \(\frac{m}{n}\) của a là b, ta tính được \(a = b:\frac{m}{n}\)
Số cần tìm là: \( - 30:\frac{3}{5} = - 50\).
Đáp án C.
Đổi hỗn số \( - 3\frac{2}{5}\) ra phân số, kết quả là:
- A \(\frac{{ - 17}}{5}\)
- B \( - \frac{{10}}{5}\)
- C \(\frac{{ - 13}}{5}\)
- D \(\frac{{ - 11}}{5}\)
Đáp án : A
Sử dụng quy tắc đổi hỗn số thành phân số.
Ta có: \( - 3\frac{2}{5} = - \frac{{3.5 + 2}}{5} = - \frac{{17}}{5}\).
Đáp án A.
Dựa vào hình vẽ, hãy chọn khẳng định đúng trong các khẳng định sau?
- A Hai đường thẳng AB và AC song song với nhau.
- B Hai đường thẳng AB và AC cắt nhau.
- C Hai đường thẳng AB và AC trùng nhau.
- D Hai đường thẳng AB và AC có hai điểm chung.
Đáp án : B
Quan sát hình vẽ để trả lời.
Hình vẽ trên là hai đường thẳng AB và AC cắt nhau tại A, chỉ có 1 điểm chung nên ta chọn đáp án B.
Đáp án B.
Hai tia đối nhau trong hình vẽ dưới đây là
- A Ay và Bx
- B Bx và By
- C Ax và By
- D AB và BA
Đáp án : B
Quan sát hình vẽ để trả lời câu hỏi.
Hai tia đối nhau phải là hai tia có chung gốc nên đáp án A, B, D sai.
Chỉ có Bx và By đúng.
Đáp án B.
Trên đường thẳng a lấy 10 điểm phân biệt. Số đoạn thẳng trong hình vẽ là:
- A 1
- B 10
- C 45
- D 90
Đáp án : C
Đếm số đoạn thẳng
Số đoạn thẳng là 45.
Đáp án C.
Lúc 10 giờ, góc tạo bởi kim giờ và kim phút là:
- A Góc nhọn
- B Góc vuông
- C Góc tù
- D Góc bẹt
Đáp án : A
Vẽ hình mô tả để xác định
Lúc 10 giờ, góc tạo bởi kim giờ và kim phút là: góc nhọn.
Đáp án A.
1) Thực hiện phép tính:
a) \(\frac{1}{4} + \frac{3}{4} \cdot \left( {\frac{2}{3} - 0,5} \right)\)
b) \(1\frac{3}{{25}} - \frac{{17}}{{19}} - \frac{3}{{25}} + \frac{{2022}}{{2023}} - \frac{2}{{19}}\)
2) Tìm \(x\) biết:
a) \(\frac{2}{3}x - \frac{1}{2} = \frac{1}{{10}}\)
b) \(5,16 - 2x = (5,7 + 2,3) \cdot ( - 0,3)\)
Áp dụng quy tắc cộng, trừ, nhân, chia.
1)
a) \(\frac{1}{4} + \frac{3}{4} \cdot \left( {\frac{2}{3} - 0,5} \right)\)\( = \frac{1}{4} + \frac{3}{4} \cdot \left( {\frac{2}{3} - \frac{1}{2}} \right)\)\( = \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{6}\)\( = \frac{1}{4} + \frac{1}{8}\)\( = \frac{3}{8}\)
b) \(1\frac{3}{{25}} - \frac{{17}}{{19}} - \frac{3}{{25}} + \frac{{2022}}{{2023}} - \frac{2}{{19}}\)\( = \left( {1\frac{3}{{25}} - \frac{3}{{25}}} \right) + \left( {\frac{{ - 17}}{{19}} + \frac{{ - 2}}{{19}}} \right) + \frac{{2022}}{{2023}}\) \( = 1 + ( - 1) + \frac{{2022}}{{2023}}\) \( = \frac{{2022}}{{2023}}.\)
2)
a) \(\frac{2}{3}x - \frac{1}{2} = \frac{1}{{10}}\)
\(\frac{2}{3}x = \frac{1}{{10}} + \frac{1}{2}\)
\(\frac{2}{3}x = \frac{3}{5}\)
\(x = \frac{3}{5}:\frac{2}{3}\)
\(x = \frac{3}{5}:\frac{2}{3}\)
\(x = \frac{9}{{10}}\)
Vậy \(x = \frac{9}{{10}}\).
b) \(5,16 - 2x = (5,7 + 2,3) \cdot ( - 0,3)\)
\(5,16 - 2x = - 2,4\)
\(2x = 5,16 - ( - 2,4)\)
\(2x = 7,56\)
\(x = 7,56:2\)
\(x = 3,78\)
Vậy \(x = 3,78\)
Lớp 6A có 40 học sinh, học lực cuối học kì II được xếp thành ba loại tốt, khá và đạt. Số học sinh xếp loại tốt chiếm \(\frac{2}{5}\) số học sinh cả lớp, số học sinh xếp loại khá bằng \(\frac{5}{8}\) số học sinh còn lại.
a) Tính số học sinh mỗi loại của lớp?
b) Hỏi số học sinh xếp loại đạt chiếm bao nhiêu phần trăm của lớp?
a) Tính \(\frac{m}{n}\) của a bằng \(\frac{m}{n}.a\).
b) Số phần trăm của a với b là \(\frac{{a.100}}{b}\% \)
a) Số học sinh xếp loại tốt là: \(40 \cdot \frac{2}{5} = 16\) ( học sinh)
Số học sinh xếp loại khá là: \((40 - 16) \cdot \frac{5}{8} = 15\) (học sinh)
Số học sinh xếp loại đạt là: \(40 - 16 - 15 = 9\) (học sinh)
b) Số học sinh xếp loại đạt chiếm số phần trảm của lớp là: \(\frac{{9.100}}{{40}}\% = 22,5\% \)
Lớp 6A có 40 học sinh, học lực cuối học kì II được xếp thành ba loại tốt, khá và đạt. Số học sinh xếp loại tốt chiếm \(\frac{2}{5}\) số học sinh cả lớp, số học sinh xếp loại khá bằng \(\frac{5}{8}\) số học sinh còn lại.
a) Tính số học sinh mỗi loại của lớp?
b) Hỏi số học sinh xếp loại đạt chiếm bao nhiêu phần trăm của lớp?
a) Tính \(\frac{m}{n}\) của a bằng \(\frac{m}{n}.a\).
b) Số phần trăm của a với b là \(\frac{{a.100}}{b}\% \)
a) Số học sinh xếp loại tốt là: \(40 \cdot \frac{2}{5} = 16\) ( học sinh)
Số học sinh xếp loại khá là: \((40 - 16) \cdot \frac{5}{8} = 15\) (học sinh)
Số học sinh xếp loại đạt là: \(40 - 16 - 15 = 9\) (học sinh)
b) Số học sinh xếp loại đạt chiếm số phần trảm của lớp là: \(\frac{{9.100}}{{40}}\% = 22,5\% \)
Cho hai tia \({\rm{Ox}},{\rm{Oy}}\) đối nhau. Trên tia \({\rm{Ox}}\) lấy điểm \({\rm{A}}\) sao cho \({\rm{OA}} = 4\;{\rm{cm}}\). Trên tia \({\rm{Oy}}\) lấy điểm \({\rm{B}}\) sao cho \({\rm{OB}} = 2\;{\rm{cm}}\). Gọi \({\rm{C}}\) là trung điểm của đoạn thẳng \({\rm{OA}}\).
a) Tính độ dài đoạn thẳng \({\rm{AB}}\).
b) Điểm \({\rm{O}}\) có là trung điểm của đoạn thẳng \({\rm{BC}}\) không? Vì sao?
c) Vẽ tia \({\rm{Oz}}\) khác các tia \({\rm{Ox}},{\rm{Oy}}\). Viết tên các góc có trong hình vẽ.
Vẽ hình theo hướng dẫn.
a) Xác định độ dài đoạn thẳng AB qua OA và OB.
b) Chứng minh OB = OC và O nằm giữa B và C nên O là trung điểm của BC.
c) Vẽ tia Oz và kể tên các góc trong hình.
Vẽ hình
a) Theo hình vẽ: \(AB = OA + OB = 4 + 2 = 6\;{\rm{cm}}\)
Vậy \(AB = 6\;{\rm{cm}}\)
b) Vì C là trung điểm của đoạn thẳng \({\rm{OA}}\) nên \(OC = \frac{{OA}}{2} = \frac{4}{2} = 2\;{\rm{cm}}\)
Suy ra \({\rm{OB}} = {\rm{OC}}\)
Lại có \({\rm{O}}\) nằm giữa \({\rm{B}}\) và \({\rm{C}}\)
Do đó O là trung điểm của đoạn thẳng \({\rm{BC}}\)
Vậy \({\rm{O}}\) là trung điểm của đoạn thẳng \({\rm{BC}}\).
c)
Các góc có trong hình vẽ là:
\(\widehat {{\rm{xOz}}};\widehat {{\rm{yOz}}};\widehat {{\rm{xOy}}},\widehat {xAy},\widehat {xCy},\widehat {xBy}\)
So sánh S với 2, biết \(S = \frac{1}{2} + \frac{2}{{{2^2}}} + \frac{3}{{{2^3}}} + \ldots + \frac{{2023}}{{{2^{2023}}}}\).
Nhân hai vế của S với 2 để rút gọn S.
\(S = \frac{1}{2} + \frac{2}{{{2^2}}} + \frac{3}{{{2^3}}} + \ldots + \frac{{2023}}{{{2^{2023}}}}\)
\(2S = 1 + \frac{2}{2} + \frac{3}{{{2^2}}} + \frac{4}{{{2^3}}} + \ldots + \frac{{2023}}{{{2^{2022}}}}\)
\(2S - S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \ldots + \frac{1}{{{2^{2022}}}} - \frac{{2023}}{{{2^{2023}}}}\)
\(S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \ldots + \frac{1}{{{2^{2022}}}} - \frac{{2023}}{{{2^{2023}}}}\)
\(2S = 2 + 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \ldots + \frac{1}{{{2^{2021}}}} - \frac{{2023}}{{{2^{2022}}}}\)
\(2S - S = 2 - \frac{{2024}}{{{2^{2022}}}} + \frac{{2023}}{{{2^{2023}}}}\)
\(S = 2 - \frac{{4048 - 2023}}{{{2^{2023}}}}\)
Vậy \(S < 2\).