Giải bài tập 1.8 trang 16 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:13:03

Đề bài

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.,\) trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:

a) \(m =  - 2;\)

b) \(m =  - 3;\)

c) \(m = 3.\)

Phương pháp giải - Xem chi tiết

Để giải hệ phương trình trong các ý trên, ta cần thay giá trị của m vào trong hệ rồi ta giải hệ thông qua các phương pháp thế hoặc cộng đại số.

Ví dụ ở ý a) Ta cần thay \(m =  - 2\) vào hệ phương trình đã cho \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.,\) ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{\left( { - 2} \right)^2}x + 9y = 3\left( { - 2 + 3} \right)\end{array} \right.\). Nên hệ phương trình trở thành \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 8x + 9y = 3\end{array} \right.\) rồi ta áp dụng các phương pháp để giải hệ. 

Lời giải chi tiết

a) Thay \(m =  - 2\) vào hệ phương trình đã cho ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 8x + 9y = 3\end{array} \right.\)

Nhân cả hai vế của phương trình thứ nhất với 4, ta được \(8x - 4y =  - 12,\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}8x - 4y =  - 12\\ - 8x + 9y = 3\end{array} \right..\)

Cộng từng vế của hai phương trình ta có \(\left( {8x - 4y} \right) + \left( { - 8x + 9y} \right) = \left( { - 12} \right) + 3\) nên \(5y =  - 9\) suy ra \(y = \frac{{ - 9}}{5}.\) Thế \(y = \frac{{ - 9}}{5}\) vào phương trình \(2x - y =  - 3\) ta được \(2x - \frac{{ - 9}}{5} =  - 3\) suy ra \(x =  - \frac{{12}}{5}.\)

Vậy nghiệm của hệ phương trình là \(\left( { - \frac{{12}}{5}; - \frac{9}{5}} \right).\)

b) Thay \(m =  - 3\) vào hệ phương trình đã cho ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 18x + 9y = 0\end{array} \right.\)

Nhân cả hai vế của phương trình thứ hai với \(\frac{1}{9}\), ta được \( - 2x + y = 0,\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}2y - y =  - 3\\ - 2x + y = 0\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( {2x - y} \right) + \left( { - 2x + y} \right) =  - 3 + 0\) nên \(0x + 0y =  - 3\) (vô lí) . Phương trình này không có giá trị nào của x và của y thỏa mãn nên hệ phương trình vô nghiệm.

c) Thay \(m = 3\) vào hệ phương trình đã cho ta được \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 18x + 9y = 18\end{array} \right.\)

Nhân cả hai vế của phương trình thứ hai với \(\frac{1}{9}\), ta được \( - 2x + y = 2,\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}2y - y =  - 3\\ - 2x + y = 2\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( {2x - y} \right) + \left( { - 2x + y} \right) =  - 3 + 2\) nên \(0x + 0y =  - 1\) (vô lí) .

Phương trình này không có giá trị nào của x và của y thỏa mãn nên hệ phương trình vô nghiệm. 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"