Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:13:12

Đề bài

Giải các hệ phương trình:

a) \(\left\{ \begin{array}{l}0,5x + 2y =  - 2,5\\0,7x - 3y = 8,1;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}5x - 3y =  - 2\\14x + 8y = 19;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}2\left( {x - 2} \right) + 3\left( {1 + y} \right) =  - 2\\3\left( {x - 2} \right) - 2\left( {1 + y} \right) =  - 3.\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Ta có thể giải hệ bằng hai phương pháp thế hoặc cộng đại số.

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}0,5x + 2y =  - 2,5\\0,7x - 3y = 8,1;\end{array} \right.\)

Nhân cả hai vế của phương trình thứ nhất với 3, phương trình thứ 2 với 2 ta được hệ phương trình \(\left\{ \begin{array}{l}1,5x + 6y =  - 7,5\\1,4x - 6y = 16,2\end{array} \right.\)

Cộng từng vế của hai phương trình ta được \(\left( {1,5x + 6y} \right) + \left( {1,4x - 6y} \right) =  - 7,5 + 16,2\) hay \(2,9x = 8,7\) nên \(x = 3.\)

Với \(x = 3\) thay vào phương trình đầu ta có \(0,5.3 + 2y =  - 2,5\) nên \(y =  - 2.\)

Vậy nghiệm của hệ phương trình là \(\left( {3; - 2} \right).\)

b) \(\left\{ \begin{array}{l}5x - 3y =  - 2\\14x + 8y = 19;\end{array} \right.\)

Nhân cả hai vế của phương trình thứ nhất với 8, phương trình thứ hai với 3 ta được hệ phương trình \(\left\{ \begin{array}{l}40x - 24y =  - 16\\42x + 24y = 57\end{array} \right.\)

Cộng hai vế của phương trình ta có \(\left( {40x - 24y} \right) + \left( {42x + 24y} \right) =  - 16 + 57\) hay \(82x = 41\) nên \(x = \frac{1}{2}.\)

Với \(x = \frac{1}{2}\) thay vào phương trình đầu ta được \(5.\frac{1}{2} - 3y =  - 2\) hay \(y = \frac{3}{2}.\)

Vậy nghiệm của hệ phương trình là \(\left( {\frac{1}{2};\frac{3}{2}} \right).\)

c) \(\left\{ \begin{array}{l}2\left( {x - 2} \right) + 3\left( {1 + y} \right) =  - 2\\3\left( {x - 2} \right) - 2\left( {1 + y} \right) =  - 3.\end{array} \right.\)

Ta có \(\left\{ \begin{array}{l}2\left( {x - 2} \right) + 3\left( {1 + y} \right) =  - 2\\3\left( {x - 2} \right) - 2\left( {1 + y} \right) =  - 3\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}2x - 4 + 3 + 3y =  - 2\\3x - 6 - 2 - 2y =  - 3\end{array} \right.\) nên ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 3y =  - 1\\3x - 2y = 5\end{array} \right.\)

 Nhân cả hai vế của phương trình thứ nhất với 2, hai vế của phương trình thứ hai với 3, ta có hệ phương trình \(\left\{ \begin{array}{l}4x + 6y =  - 2\\9x - 6y = 15\end{array} \right.\)

Cộng từng vế của hai phương trình ta có \(\left( {4x + 6y} \right) + \left( {9x - 6y} \right) =  - 2 + 15\) hay \(13x = 13\) nên \(x = 1.\)

Với \(x = 1\) thay vào phương trình đầu ta được \(2.1 + 3y =  - 1\) nên \(y =  - 1.\)

Vậy nghiệm của hệ phương trình là \(\left( {1; - 1} \right).\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"