Giải bài tập 2.3 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:13:15

Đề bài

Giải các phương trình sau:

a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)

b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}.\)

Phương pháp giải - Xem chi tiết

Các bước giải phương trình chứa ẩn ở mẫu

-  Bước 1: Tìm ĐKXĐ

-  Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu

-  Bước 3: Giải phương trình vừa thu được

-  Bước 4: Kết luận (đối chiếu ĐKXĐ).

Lời giải chi tiết

a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)

ĐKXĐ: \(x \ne  - 1;x \ne \frac{{ - 1}}{2}.\)

Quy đồng mẫu thức ta được:

\(\frac{{2\left( {x + 1} \right)}}{{\left( {2x + 1} \right)\left( {x + 1} \right)}} + \frac{{1.\left( {2x + 1} \right)}}{{\left( {x + 1} \right)\left( {2x + 1} \right)}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)

Khử mẫu ta được:

\(\begin{array}{l}2\left( {x + 1} \right) + 1.\left( {2x + 1} \right) = 3\\4x + 3 = 3\\x = 0\left( {t/m} \right).\end{array}\)

Vậy nghiệm của phương trình đã cho là \(x = 0.\)

b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}.\)

ĐKXĐ: \(x \ne  - 1.\)

Quy đồng mẫu thức ta được: \(\frac{{1.\left( {{x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{x\left( {x + 1} \right)}}{{\left( {{x^2} - x + 1} \right)\left( {x + 1} \right)}} = \frac{{3x}}{{\left( {{x^2} - x + 1} \right)\left( {x + 1} \right)}}.\)

Khử mẫu ta được:

\(\begin{array}{l}1.\left( {{x^2} - x + 1} \right) - x\left( {x + 1} \right) = 3x\\ - 2x + 1 = 3x\\5x = 1\\x = \frac{1}{5}\left( {t/m} \right).\end{array}\)

Vậy nghiệm của phương trình đã cho là \(x = \frac{1}{5}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"