Giải bài tập 2.2 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:13:15

Đề bài

Giải các phương trình sau:

a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)

b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)

Phương pháp giải - Xem chi tiết

Cần đưa phương trình đã cho về dạng \(A\left( x \right).B\left( x \right) = 0\) thì \(A\left( x \right) = 0\) hoặc \(B\left( x \right) = 0\)

Bằng cách sử dụng phương pháp phân tích đa thức thành nhân tử thông qua đặt nhân tử chung hoặc sử dụng hằng đẳng thức đáng nhớ

Lời giải chi tiết

a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)

\(\begin{array}{l}\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0\\\left( {x - 2} \right)\left( {x + 2} \right) + x\left( {x - 2} \right) = 0\\\left( {x - 2} \right)\left( {x + 2 + x} \right) = 0\end{array}\)

\(\begin{array}{l}\left( {x - 2} \right)\left( {2x + 2} \right) = 0\\TH1:x - 2 = 0\\x = 2\\TH2:2x + 2 = 0\\2x =  - 2\\x =  - 1\end{array}\)

Vậy \(x \in \left\{ { - 1;2} \right\}.\)

b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)

\(\begin{array}{l}{\left( {2x + 1} \right)^2} - {\left( {3x} \right)^2} = 0\\\left( {2x + 1 - 3x} \right)\left( {2x + 1 + 3x} \right) = 0\\(1-x).\left( {5x + 1} \right) = 0\end{array}\)

\(TH1:1-x = 0\\x = 1\\TH2:5x + 1 = 0\\5x =- 1\\x =  -\frac{1}{5}\)

Vậy \(x \in \left\{ { 1;-\frac{1}{5}} \right\}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"