Giải mục 1 trang 49, 50 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:13:34

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 49 SGK Toán 9 Kết nối tri thức

Tính và so sánh: \(\sqrt {100} .\sqrt 4 \) và \(\sqrt {100.4} .\)

Phương pháp giải:

Sử dụng kiến thức về căn bậc hai để tính.

So sánh kết quả.

Lời giải chi tiết:

Ta có: \(\sqrt {100} .\sqrt 4  = 10.2 = 20;\sqrt {100.4}  = \sqrt {400}  = 20\).

Từ đó ta có \(\sqrt {100.4}  = \sqrt {100} .\sqrt 4 \)


LT1

Trả lời câu hỏi Luyện tập 1 trang 49 SGK Toán 9 Kết nối tri thức

a) Tính \(\sqrt 3 .\sqrt {75} \)

b) Rút gọn \(\sqrt {5a{b^3}} .\sqrt {5ab} \) (với \(a < 0,b < 0\)) .

Phương pháp giải:

Sử dụng kiến thức \(\sqrt A .\sqrt B  = \sqrt {A.B} \)

Lời giải chi tiết:

a) Ta có: \(\sqrt 3 .\sqrt {75}  = \sqrt {3.75}  = \sqrt {225}  = 15\)

b) \(\sqrt {5a{b^3}} .\sqrt {5ab}  \) \(= \sqrt {5a{b^3}.5ab}  \) \(= \sqrt {25a^2{b^4}} \) \(= \sqrt {25}. \sqrt{a^2} \sqrt{b^4} \) \(= 5\left| a \right| \left| {b^2} \right| \) \(= 5(-a)b^2 \) \(= -5ab^2\)


LT2

Trả lời câu hỏi Luyện tập 2 trang 50 SGK Toán 9 Kết nối tri thức

a) Tính nhanh \(\sqrt {25.49} .\)

b) Phân tích thành nhân tử: \(\sqrt {ab}  - 4\sqrt a \) (với \(a \ge 0,b \ge 0\) ) .

Phương pháp giải:

a) Sử dụng kiến thức \(\sqrt A .\sqrt B  = \sqrt {A.B} \)

b) Phân tích đa thức thành nhân tử bằng các phương pháp (Sử dụng Hằng đẳng thức, đặt nhân tử chung và nhóm hạng tử) .

Lời giải chi tiết:

a) \(\sqrt {25.49}  = \sqrt {25} .\sqrt {49}  = \sqrt {{5^2}} .\sqrt {{7^2}}  = 5.7 = 35\)

b) Ta có \(\sqrt {ab}  = \sqrt a .\sqrt b \) mà \(4\sqrt a  = 4.\sqrt a \) từ đó ta có nhân tử chung là \(\sqrt a \) nên ta có \(\sqrt {ab}  - 4\sqrt a  = \sqrt a .\sqrt b  - 4\sqrt a  = \sqrt a .\left( {\sqrt b  - 4} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"