Đề bài
Rút gọn biểu thức \(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\left( {x \ge 0,x \ne 9} \right).\)
Phương pháp giải - Xem chi tiết
Đối với biểu thức trên ta có thể sử dụng trục căn thức ở mẫu. Rồi quy đồng mẫu rồi cộng trừ như cộng trừ phân thức.
Lời giải chi tiết
\(\begin{array}{l}A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\\ = \sqrt x .\left( {\frac{{\sqrt x - 3}}{{x - 9}} - \frac{{3 + \sqrt x }}{{9 - x}}} \right)\\ = \sqrt x \left( {\frac{{\sqrt x - 3 + 3 + \sqrt x }}{{x - 9}}} \right)\\ = \sqrt x .\frac{2\sqrt x}{x-9} \\ = \frac{2x}{x-9}\end{array}\)