Giải bài tập 4.1 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:13:54

Đề bài

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cosin, tang, cotang của các góc nhọn B và C khi biết:

a) AB = 8 cm, BC = 17 cm;

b) AC = 0,9 cm, AB = 1,2 cm.

Phương pháp giải - Xem chi tiết

Sử dụng các tỉ số lượng giác để giải.

Lời giải chi tiết

a)

Tam giác ABC vuông tại A nên ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Thay số ta có \({17^2} = {8^2} + A{C^2}\) hay \(A{C^2} = {17^2} - {8^2} = 225\) suy ra \(AC = 15\) cm (vì \(AC > 0\))

Ta có: \(\sin \widehat B = \cos \widehat C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}}\)

\(\cos \widehat B = \sin \widehat C = \frac{{AB}}{{BC}} = \frac{8}{{17}}\)

\(\tan \widehat B = \cot \widehat C = \frac{{AC}}{{AB}} = \frac{{15}}{8}\)

\(\cot \widehat B = \tan \widehat C = \frac{{AB}}{{AC}} = \frac{8}{{15}}\)

b)

Tam giác ABC vuông tại A nên ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Thay số ta có \(B{C^2} = 1,{2^2} + 0,{9^2} = 2,25\) hay \(CB = \sqrt {2,25}  = 1,5\) cm (vì \(BC > 0\))

Ta có: \(\sin \widehat B = \cos \widehat C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = \frac{3}{5}\)

\(\cos \widehat B = \sin \widehat C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = \frac{4}{5}\)

\(\tan \widehat B = \cot \widehat C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = \frac{3}{4}\)

\(\cot \widehat B = \tan \widehat C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"