Lý thuyết Mở đầu về đường tròn Toán 9 Kết nối tri thức

2024-09-14 18:14:43

1. Đường tròn

Định nghĩa đường tròn

Đường tròn tâm O bán kính R (R > 0), kí hiệu là (O; R), là hình gồm tất cả các điểm cách điểm O một khoảng bằng R.

Khi không cần để ý đến bán kính ta kí hiệu đường tròn tâm O là (O).

Điểm thuộc đường tròn

Nếu A là một điểm của đường tròn (O) thì ta viết \(A \in \left( O \right)\). Khi đó, ta còn nói đường  tròn (O) đi qua điểm A, hay điểm A nằm trên đường tròn (O).

Tổng quát:

- Điểm A nằm trên đường tròn (O; R) nếu OA = R;

- Điểm A nằm trong đường tròn (O; R) nếu OA < R;

- Điểm A nằm ngoài đường tròn (O; R) nếu OA > R.

Hình tròn tâm O bán kính R là hình gồm các điểm nằm trên và nằm trong đường tròn (O;R).

2. Tính đối xứng của đường tròn

a) Đối xứng tâm

Hai điểm M và M’ gọi là đối xứng với nhau qua điểm I (hay qua tâm I) nếu I là trung điểm của đoạn MM’.

Ví dụ: Nếu O là giao điểm của hai đường chéo của hình bình hành ABCD thì

+) OA = OC nên A và C đối xứng với nhau.

+) OB = OD nên B và D đối xứng với nhau.

b) Đối xứng trục

Hai điểm M và M’ gọi là đối xứng với nhau qua đường thẳng d (hay qua trục d) nếu d là đường trung trực của đoạn MM’.

Ví dụ: Nếu AH là đường cao trong tam giác ABC cân tại A thì AH cũng là đường trung trực của BC, nên B và C đối xứng với nhau qua AH.

c) Tâm đối xứng của đường tròn

- Đường tròn là hình có tâm đối xứng; tâm của đường tròn là tâm đối xứng của nó.

- Đường tròn có một tâm đối xứng.

d) Trục đối xứng của đường tròn

- Đường tròn là hình có trục đối xứng; mỗi đường thẳng qua tâm của đường tròn là một trục đối xứng của nó.

- Đường tròn có vô số trục đối xứng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"