Giải bài tập 5.7 trang 90 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:14:45

Đề bài

Tâm O của một đường tròn cách dây AB của nó một khoảng 3 cm. Tính bán kính của đường tròn (O), biết rằng dây cung nhỏ AB có số đo bằng \(100^\circ \)(làm tròn kết quả đến hàng phần mười).

Phương pháp giải - Xem chi tiết

Theo bài 5.6, \(\widehat {HOA} = \frac{{\widehat {AOB}}}{2} = \frac{{100^\circ }}{2} = 50^\circ \). Xét tam giác OAH vuông tại H từ đó tính được độ dài bán kính OA.

Lời giải chi tiết

Theo bài ra ta có sđ\(\overset\frown{AB}=100^\circ \).

Kẻ OH là đường cao của tam giác OAB, H \(\in\) AB.

Tam giác OAB cân tại O nên OH đồng thời là đường phân giác, khi đó:

\(\widehat {HOA} = \widehat {HOB} = \frac{{\widehat {AOB}}}{2}\) mà \(\widehat {AOB} = \)sđ\(\overset\frown{AB}=100{}^\circ \)

nên \(\widehat {HOA} = \frac{{100^\circ }}{2} = 50^\circ \)

Xét tam giác OAH vuông tại H có:

\(\cos \widehat {HOA} = \frac{{OH}}{{OA}} \Rightarrow OA = \frac{{OH}}{{\cos \widehat {HOA}}} = \frac{3}{{\cos 50^\circ }} \approx 4,7\)(cm)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"