Giải bài tập 5.6 trang 90 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:14:45

Đề bài

Cho đường tròn (O; 5 cm) và AB là một dây bất kì của đường tròn đó. Biết AB = 6 cm.

a) Tính khoảng cách từ O đến đường thẳng AB.

b) Tính\(\tan \alpha \)nếu góc ở tâm chắn cung AB bằng \(2\alpha .\)

Phương pháp giải - Xem chi tiết

a) Gọi H là trung điểm của AB, chứng minh \(OH \bot AB\) hay khoảng cách từ O đến đường thẳng AB bằng độ dài đoạn OH. Sau đó áp dụng định lý Pythagore để tính OH.

b) \(\widehat {AOB} = 2\alpha  \Rightarrow \alpha  = \widehat {HOA}\). Xét tam giác OAH để tính \(\tan \alpha .\)

Lời giải chi tiết

a) Kẻ \( OH \bot AB\).

Ta có \(\Delta AOB\) cân tại O (OA = OB), OH là đường cao nên OH cũng là đường trung tuyên của \(\Delta OAB\)

Suy ra H là trung điểm của AB nên \(AH = HB = 3cm\)

Xét \(\Delta AHO\) vuông tại H, áp dụng định lý Pythagore, ta có:

\(OH = \sqrt{OA^2-AH^2} = \sqrt{5^2-3^2}= 4 (cm)\) 

Vậy khoảng cách từ O đến BC là 4cm.

b) Ta có: \(\widehat{AOB} = 2\alpha \).

OH là đường cao của tam giác AOB cân tại O nên OH cũng là đường phân giác của \(\widehat{AOB}\)

Suy ra \(\widehat {AOH} = \widehat{BOH} = \alpha\)

Tam giác AOH vuông tại H nên ta có:

\(tan\alpha = \frac{AH}{OH} = \frac{3}{4}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"