Giải bài tập 5.40 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:15:30

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F) khác A. Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.46).

 

a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông.

b) Chứng minh rằng \({\rm{IK}} = \frac{1}{2}{\rm{EF}}\).

c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?

Phương pháp giải - Xem chi tiết

a) Chứng minh OO’KI là hình thang có 1 góc vuông.

b) Áp dụng tính chất trung điểm của đoạn thẳng.

c) Hình thang OO’KI là hình chữ nhật khi và chỉ khi \(\widehat {{\rm{OIO'}}} = 90^\circ \).

Lời giải chi tiết

a) Tam giác OAE cân tại O có OI là trung tuyến nên OI cũng là đường cao.

Tam giác O’AF cân tại O có O’K là trung tuyến nên O’K cũng là đường cao.

Suy ra: OI // O’K (vì cùng vuông góc với d)

Do đó: OO’KI là hình thang.

Mà: \(\widehat {{\rm{OIA}}} = 90^\circ \)

Vậy OO’KI là một hình thang vuông.

b)

Vì I là trung điểm của AE nên \({\rm{IA}} = \frac{1}{2}{\rm{AE}}\)

Vì K là trung điểm của AF nên \({\rm{AK}} = \frac{1}{2}{\rm{AF}}\)

Suy ra: \({\rm{IK}} = {\rm{IA}} + {\rm{AK}} = \frac{1}{2}{\rm{AE}} + \frac{1}{2}{\rm{AF}} = \frac{1}{2}{\rm{EF}}\)

c) Hình thang OO’KI là hình chữ nhật khi và chỉ khi \(\widehat {{\rm{OIO'}}} = 90^\circ \) hay \({\rm{OI}} \bot {\rm{OO'}}\)

Mà \({\rm{d}} \bot {\rm{OI}}\) nên \({\rm{d//OO'}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"