Giải bài tập 5.39 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:15:30

Đề bài

Cho tam giác vuông ABC (A vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A’. Chứng minh rằng:

a) BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA).

b) CA và CA’ là hai tiếp tuyến cắt nhau của (B; BA). 

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta {\rm{ABC}} = \Delta {\rm{A'BC}}\) từ đó suy ra \(\widehat {{\rm{BA'C}}} = \widehat {{\rm{BAC}}} = 90^\circ \).

Do đó BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA).

b)  Lần lượt chứng minh CA và CA’ là các tiếp tuyến của (B; BA).

Lời giải chi tiết

a) Xét tam giác ABC và tam giác A’BC có:

BA = BA’

BC chung

CA = CA’

Suy ra: \(\Delta {\rm{ABC}} = \Delta {\rm{A'BC}}\)(c.c.c)

Do đó: \(\widehat {{\rm{BA'C}}} = \widehat {{\rm{BAC}}} = 90^\circ \) (hai góc tương ứng)

Suy ra: \({\rm{CA'}} \bot {\rm{BA'}}\) tại A’ nên BA’ là tiếp tuyến của (C; CA)

Lại có: \({\rm{CA}} \bot {\rm{BA}}\) tại A nên BA là tiếp tuyến của (C; CA)

Vậy BA và BA’ là hai tiếp tuyến cắt nhau của (B; BA).

b) \({\rm{CA'}} \bot {\rm{BA'}}\) tại A’ nên CA’ là tiếp tuyến của (B; BA)

\({\rm{CA}} \bot {\rm{BA}}\) tại A nên CA là tiếp tuyến của (B; BA)

Vậy CA và CA’ là hai tiếp tuyến cắt nhau của (C; CA).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"