Giải bài tập 6.9 trang 16 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:15:51

Đề bài

Giải các phương trình sau:

a) \(2{x^2} + \frac{1}{3}x = 0\);

b) \({\left( {3x + 2} \right)^2} = 5\).

Phương pháp giải - Xem chi tiết

a) Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.

b) Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).

+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A =  - \sqrt B \). Giải các phương trình đó và kết luận.

Lời giải chi tiết

a) \(2{x^2} + \frac{1}{3}x = 0\)

\(x\left( {2x + \frac{1}{3}} \right) = 0\)

\(x = 0\) hoặc \(x =  - \frac{1}{6}\)

Vậy phương trình có hai nghiệm \(x = 0\); \(x =  - \frac{1}{6}\).

b) \({\left( {3x + 2} \right)^2} = 5\)

\(3x + 2 = \sqrt 5 \) hoặc \(3x + 2 =  - \sqrt 5 \)

\(x = \frac{{\sqrt 5  - 2}}{3}\)           \(x = \frac{{ - \sqrt 5  - 2}}{3}\)

Vậy phương trình có hai nghiệm \(x = \frac{{\sqrt 5  - 2}}{3}\); \(x = \frac{{ - \sqrt 5  - 2}}{3}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"