Giải mục 2 trang 12, 13 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:15:53

LT2

Trả lời câu hỏi Luyện tập 2 trang 12 SGK Toán 9 Kết nối tri thức

Giải các phương trình sau:

a) \(2{x^2} + 6x = 0\);

b) \(5{x^2} + 11x = 0\).

Phương pháp giải:

Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.

Lời giải chi tiết:

a) \(2{x^2} + 6x = 0\)

\(2x\left( {x + 3} \right) = 0\)

\(x = 0\) hoặc \(x =  - 3\)

Vậy phương trình có hai nghiệm \(x = 0\); \(x =  - 3\).

b) \(5{x^2} + 11x = 0\)

\(x\left( {5x + 11} \right) = 0\)

\(x = 0\) hoặc \(x =  - \frac{{11}}{5}\)

Vậy phương trình có hai nghiệm \(x = 0\); \(x =  - \frac{{11}}{5}\).


LT3

Trả lời câu hỏi Luyện tập 3 trang 12 SGK Toán 9 Kết nối tri thức

Giải các phương trình sau:

a) \({x^2} - 25 = 0\);

b) \({\left( {x + 3} \right)^2} = 5\).

Phương pháp giải:

Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).

+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A =  - \sqrt B \). Giải các phương trình đó và kết luận.

Lời giải chi tiết:

a) \({x^2} - 25 = 0\)

\({x^2} = 25\)

\(x = 5\) hoặc \(x =  - 5\)

Vậy phương trình có hai nghiệm \(x = 5\); \(x =  - 5\).

b) \({\left( {x + 3} \right)^2} = 5\)

\(x + 3 = \sqrt 5 \) hoặc \(x + 3 =  - \sqrt 5 \)

\(x =  - 3 + \sqrt 5 \) hoặc \(x =  - 3 - \sqrt 5 \)

Vậy phương trình có hai nghiệm \(x =  - 3 + \sqrt 5 \); \(x =  - 3 - \sqrt 5 \).


LT4

Trả lời câu hỏi Luyện tập 4 trang 13 SGK Toán 9 Kết nối tri thức

Cho phương trình \({x^2} + 6x = 1\). Hãy cộng vào cả hai vế của phương trình với cùng một số thích hợp để được một phương trình mà vế trái có thể biến đổi thành một bình phương. Từ đó, giải phương trình đã cho.

Phương pháp giải:

Các bước giải phương trình:

+ Bước 1: Cộng thêm 9 vào 2 vế để đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).

+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A =  - \sqrt B \). Giải các phương trình đó và kết luận.

Lời giải chi tiết:

\({x^2} + 6x = 1\)

\({x^2} + 2.x.3 + {3^2} = 1 + 9\)

\({\left( {x + 3} \right)^2} = 10\)

\(x + 3 = \sqrt {10} \) hoặc \(x + 3 =  - \sqrt {10} \)

\(x =  - 3 + \sqrt {10} \)       \(x =  - 3 - \sqrt {10} \)

Vậy phương trình có hai nghiệm \(x =  - 3 + \sqrt {10} \); \(x =  - 3 - \sqrt {10} \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"