Đề bài
Biết rằng parabol \(y = a{x^2}\left( {a \ne 0} \right)\) đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\).
a) Tìm hệ số a và vẽ đồ thị của hàm số \(y = a{x^2}\) với a vừa tìm được.
b) Tìm tung độ của điểm thuộc parabol có hoành độ \(x = - 1\).
c) Tìm các điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \).
Phương pháp giải - Xem chi tiết
a) Thay \(x = 2;y = 4\sqrt 3 \) vào hàm số \(y = a{x^2}\), giải phương trình thu được tìm được a.
+ Thay a vừa tìm được để viết parabol \(y = a{x^2}\).
+ Cách vẽ parabol \(y = a{x^2}\left( {a \ne 0} \right)\)
- Lập bảng ghi một số cặp giá trị tương ứng của x và y.
- Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).
b) Thay \(x = - 1\) vào parabol tìm được trong câu a để tìm tung độ.
c) Thay \(y = 5\sqrt 3 \) vào parabol tìm được trong câu a để tìm hoành độ.
Lời giải chi tiết
a) Vì parabol \(y = a{x^2}\) đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\) nên ta có: \(4\sqrt 3 = a{.2^2} \Rightarrow a = \sqrt 3 \)
Suy ra, parabol cần tìm là: \(y = \sqrt 3 {x^2}\).
Vẽ đồ thị hàm số \(y = \sqrt 3 {x^2}\):
Lập bảng một số cặp giá trị tương ứng của x và y:
Biểu diễn các điểm \(\left( { - 2;4\sqrt 3 } \right);\left( { - 1;\sqrt 3 } \right);\left( {0;0} \right);\left( {1;\sqrt 3 } \right);\left( {2;4\sqrt 3 } \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y = \sqrt 3 {x^2}\) như hình vẽ.
b) Thay \(x = - 1\) vào hàm số \(y = \sqrt 3 {x^2}\) ta có: \(y = \sqrt 3 .{\left( { - 1} \right)^2} = \sqrt 3 \). Vậy tung độ của điểm thuộc parabol có hoành độ \(x = - 1\) là \(y = \sqrt 3 \).
c) Thay \(y = 5\sqrt 3 \) vào hàm số \(y = \sqrt 3 {x^2}\) ta có: \(5\sqrt 3 = \sqrt 3 .{x^2}\), suy ra \(x = \sqrt 5 \) hoặc \(x = - \sqrt 5 \).
Vậy các điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \) là \(\left( {\sqrt 5 ;5\sqrt 3 } \right);\left( { - \sqrt 5 ;5\sqrt 3 } \right)\).