Giải bài tập 6.27 trang 24 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:15:58

Đề bài

Một bể bơi hình chữ nhật có diện tích \(500{m^2}\) và chu vi là 150m. Tính các kích thước của bể bơi này.

Phương pháp giải - Xem chi tiết

+ Chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình: \({x^2} - 75x + 500 = 0\)

+ Giải phương trình ta tìm được chiều dài và chiều rộng của mảnh vườn.

Lời giải chi tiết

Nửa chu vi của mảnh vườn là: \(150:2 = 75\left( m \right)\).

Khi đó, chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình: \({x^2} - 75x + 500 = 0\)

Ta có: \(\Delta  = {\left( { - 75} \right)^2} - 4.1.500 = 3625 > 0 \Rightarrow \sqrt \Delta   = 5\sqrt {145} \) nên phương trình có hai nghiệm phân biệt\({x_1} = \frac{{75 + 5\sqrt {145} }}{2};{x_2} = \frac{{75 - 5\sqrt {145} }}{2}\)

Do đó, chiều dài và chiều rộng của mảnh vườn lần lượt là \(\frac{{75 + 5\sqrt {145} }}{2}\)m và \(\frac{{75 - 5\sqrt {145} }}{2}\)m.

Chú ý khi giải: Trong hình chữ nhật, chiều dài luôn lớn hơn chiều rộng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"