Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:16:03

Đề bài

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?

Phương pháp giải - Xem chi tiết

+ Thay \(d = 300feet\) vào công thức \(d = 0,05{v^2} + 1,1v\) để tìm v.

+ So sánh vận tốc đó với 70 dặm/ giờ, từ đó đưa ra kết luận.

Lời giải chi tiết

Với \(d = 300feet\) ta có: \(0,05{v^2} + 1,1v = 300\)

\(0,05{v^2} + 1,1,v - 300 = 0\)

Ta có: \(\Delta  = 1,{1^2} - 4.0,05.\left( { - 300} \right) = 61,21\) nên phương trình có hai nghiệm phân biệt

\(\begin{array}{l}{v_1} = \frac{{ - 1,1 + \sqrt {61,21} }}{{2.0,05}} =  - 11 + \sqrt {6121} \left( {tm\;do\;v > 0} \right);\\{v_2} = \frac{{ - 1,1 - \sqrt {61,21} }}{{2.0,05}} =  - 11 - \sqrt {6121} \left( {ktm\;do\;v > 0} \right)\end{array}\)

Vì \( - 11 + \sqrt {6121}  < 70\) nên ô tô dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.

Chú ý khi giải: Tốc độ trong chuyển động luôn dương.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"