Giải bài tập 6.45 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:16:05

Đề bài

Vẽ đồ thị của các hàm số \(y = \frac{5}{2}{x^2}\) và \(y =  - \frac{5}{2}{x^2}\) trên cùng một mặt phẳng tọa độ.

Phương pháp giải - Xem chi tiết

Cách vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\):

+ Lập bảng ghi một số cặp giá trị tương ứng của x và y.

+ Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).

Lời giải chi tiết

Vẽ đồ thị hàm số \(y = \frac{5}{2}{x^2}\):

Lập bảng một số cặp giá trị tương ứng của x và y:

Biểu diễn các điểm \(\left( { - 2;10} \right);\left( {\frac{{ - 3}}{2};\frac{{45}}{8}} \right);\left( { - 1;\frac{5}{2}} \right);\left( {0;0} \right);\left( {1;\frac{5}{2}} \right),\left( {\frac{3}{2};\frac{{45}}{8}} \right);\left( {2;10} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y = \frac{5}{2}{x^2}\) như hình vẽ (đường màu xanh).

Vẽ đồ thị hàm số \(y =  - \frac{5}{2}{x^2}\):

Lập bảng một số cặp giá trị tương ứng của x và y:

Biểu diễn các điểm \(\left( { - 2; - 10} \right);\left( {\frac{{ - 3}}{2}; - \frac{{45}}{8}} \right);\left( { - 1; - \frac{5}{2}} \right);\left( {0;0} \right);\left( {1; - \frac{5}{2}} \right),\left( {\frac{3}{2}; - \frac{{45}}{8}} \right);\left( {2; - 10} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y =  - \frac{5}{2}{x^2}\) như hình vẽ (đường màu đỏ).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"