Giải mục 2 trang 87, 88, 89 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:18:19

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 87 SGK Toán 9 Kết nối tri thức

Để bày bàn ăn cho nhiều người, các nhà hàng thường sử dụng bàn xoay có hình tròn và quay được quanh tâm của hình tròn. Đặt một chiếc cốc nhỏ ở vị trí điểm A trên bàn xoay hình tròn với tâm O sao cho điểm A khác điểm O. Khi quay bàn xoay thuận chiều kim đồng hồ (H.9.46) thì chiếc cốc di chuyển đến một vị trí mới là điểm B.

Em hãy so sánh khoảng cách từ hai điểm A và B đến điểm O. Hai điểm A, B có cùng nằm trên một đường tròn tâm O hay không?

Phương pháp giải:

Khoảng cách từ hai điểm A và B đến O bằng nhau. Hai điểm A, B cùng nằm trên một đường tròn, có bán kính \(OA = OB\).

Lời giải chi tiết:

Khoảng cách từ hai điểm A và B đến O bằng nhau. Hai điểm A, B cùng nằm trên một đường tròn, có bán kính \(OA = OB\).


HĐ3

Trả lời câu hỏi Hoạt động 3 trang 87 SGK Toán 9 Kết nối tri thức

Trên bàn xoay tâm O, vẽ tam giác đều ABC nội tiếp một đường tròn (O) và hai tia OA, OB (H.9.47). Khi quay bàn xoay thuận chiều kim đồng hồ để tia OA di chuyển trùng với tia OB (ở vị trí ban đầu), điểm A có di chuyển đến điểm B không và sẽ di chuyển trên cung tròn nào của đường tròn (O)? Khi đó, điểm C sẽ di chuyển đến vị trí của điểm nào?

Phương pháp giải:

Khi quay bàn xoay thuận chiều kim đồng hồ để tia OA di chuyển trùng với tia OB (ở vị trí ban đầu), thì điểm A có di chuyển đến điểm B và sẽ di chuyển trên cung AB, điểm C di chuyển đến điểm A.

Lời giải chi tiết:

Khi quay bàn xoay thuận chiều kim đồng hồ để tia OA di chuyển trùng với tia OB (ở vị trí ban đầu), thì điểm A có di chuyển đến điểm B và sẽ di chuyển trên cung AB, điểm C di chuyển đến điểm A.


CH

Trả lời câu hỏi Câu hỏi trang 88 SGK Toán 9 Kết nối tri thức

a) Phép quay ngược chiều \({180^o}\) tâm O biến điểm A thành điểm A’. Hỏi điểm A’ có đối xứng với điểm A qua O hay không?

b) Nếu phép quay thuận chiều \({\alpha ^o}\) tâm O biến điểm A thành điểm B thì phép quay ngược chiều \({\alpha ^o}\) tâm O biến điểm B thành điểm A hay không?

Phương pháp giải:

a) Chứng minh 3 điểm A, O, A’ thẳng hàng và \(OA = OA'\), suy ra điểm A’ có đối xứng với điểm A qua O.

b) Nếu phép quay thuận chiều \({\alpha ^o}\) tâm O biến điểm A thành điểm B thì phép quay ngược chiều \({\alpha ^o}\) tâm O biến điểm B thành điểm A.

Lời giải chi tiết:

a)

Phép quay ngược chiều \({180^o}\) tâm O biến điểm A thành điểm A’ thì \(OA = OA'\) và \(\widehat {A'OA} = {180^o}\). Do đó, 3 điểm A, O, A’ thẳng hàng và \(OA = OA'\). Suy ra, điểm A’ có đối xứng với điểm A qua O.

b) Nếu phép quay thuận chiều \({\alpha ^o}\) tâm O biến điểm A thành điểm B thì phép quay ngược chiều \({\alpha ^o}\) tâm O biến điểm B thành điểm A.


LT2

Trả lời câu hỏi Luyện tập 2 trang 88 SGK Toán 9 Kết nối tri thức

Cho hình vuông ABCD nội tiếp đường tròn (O) như Hình 9.50.

a) Phép quay thuận chiều \({90^o}\) tâm O biến các điểm A, B, C, D thành những điểm nào? Phép quay này có giữ nguyên hình vuông ABCD không?

b) Hãy liệt kê thêm ba phép quay khác với tâm O theo chiều kim đồng hồ giữ nguyên hình vuông ABCD.

Phương pháp giải:

+ Phép quay thuận chiều \({\alpha ^o}\left( {{0^o} < {\alpha ^o} < {{360}^o}} \right)\) tâm O giữ nguyên điểm O, biến điểm A khác điểm O thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay thuận chiều kim đồng hồ đến tia OB thì điểm A tạo nên cung AB có số đo \({\alpha ^o}\).

+ Một phép quay được gọi là giữ nguyên một đa giác đều H nếu phép quay đó biến mỗi điểm của H thành một điểm của H.

Lời giải chi tiết:

a) Phép quay thuận chiều \({90^o}\) tâm O biến các điểm A, B, C, D thành những điểm tương ứng B, C, D, A.

b) Ba phép quay khác với tâm O theo chiều kim đồng hồ giữ nguyên hình vuông ABCD là phép quay theo chiều \({\alpha ^o}\) tâm O với \({\alpha ^o}\) lần lượt nhận các giá trị \({180^o},{270^o},{360^o}\).


TTN2

Trả lời câu hỏi Thử thách nhỏ 2 trang 89 SGK Toán 9 Kết nối tri thức

Hãy liệt kê 6 phép quay giữ nguyên một lục giác đều nội tiếp một đường tròn (O).

Phương pháp giải:

+ Phép quay thuận chiều \({\alpha ^o}\left( {{0^o} < {\alpha ^o} < {{360}^o}} \right)\) tâm O giữ nguyên điểm O, biến điểm A khác điểm O thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay thuận chiều kim đồng hồ đến tia OB thì điểm A tạo nên cung AB có số đo \({\alpha ^o}\).

+ Một phép quay được gọi là giữ nguyên một đa giác đều H nếu phép quay đó biến mỗi điểm của H thành một điểm của H.

Lời giải chi tiết:

6 phép quay giữ nguyên một lục giác đều nội tiếp một đường tròn (O) là: 6 phép quay thuận chiều kim đồng hồ góc \({\alpha ^o}\) tâm O với \({\alpha ^o}\) lần lượt nhận các giá trị \({60^o};{120^o};{180^o};{240^o};{300^o};{360^o}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"