Giải bài tập 10.3 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:18:36

Đề bài

Khi cho tam giác SOA vuông tại O quay quanh cạnh SO một vòng, ta được một hình nón. Biết \(OA = 8cm\), \(SA = 17cm\) (H.10.14).

a) Tính diện tích xung quanh của hình nón.

b) Tính thể tích của hình nón.

Phương pháp giải - Xem chi tiết

a) Diện tích xung quanh của hình nón bán kính r và độ dài đường sinh l là: \({S_{xq}} = \pi rl\).

b) Thể tích của hình nón bán kính r và chiều cao h là: \(V = \frac{1}{3}\pi {r^2}h\).

Lời giải chi tiết

a) Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi .OA.SA = \pi .8.17 = 136\pi \left( {c{m^2}} \right)\)

b) Áp dụng định lí Pythagore vào tam giác SAO vuông tại O có: \(S{O^2} + A{O^2} = S{A^2}\)

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{{17}^2} - {8^2}}  = 15\left( {cm} \right)\)

Thể tích của hình nón là:

\(V = \frac{1}{3}\pi .A{O^2}.SO = \frac{1}{3}\pi {.8^2}.15 = 320\pi \left( {c{m^3}} \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"