Giải bài tập 1 trang 127 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:19:25

Đề bài

Xét biểu thức \(P = \frac{{x\sqrt x  - x + 2\sqrt x  + 4}}{{x\sqrt x  + 8}}\) với \(x \ge 0\).

a) Chứng minh rằng \(P = 1 - \frac{1}{{\sqrt x  + 2}}\).

b) Tính giá trị biểu thức đã cho tại \(x = 64\).

Phương pháp giải - Xem chi tiết

a) + Phân tích biểu thức tử thức thành nhân tử bằng cách tách hạng tử.

+ Phân tích biểu thức mẫu thức bằng cách sử dụng hằng đẳng thức.

+ Rút gọn phân thức được \(P = 1 - \frac{1}{{\sqrt x  + 2}}\).

b) So sánh \(x = 64\) với điều kiện, thay \(x = 64\) vào P để tính giá trị P.

Lời giải chi tiết

a) Với \(x \ge 0\) ta có:

\(P\)\( = \frac{{x\sqrt x  - x + 2\sqrt x  + 4}}{{x\sqrt x  + 8}}\)\( = \frac{{x\sqrt x  + x - 2x - 2\sqrt x  + 4\sqrt x  + 4}}{{{{\left( {\sqrt x } \right)}^3} + {2^3}}}\)\( = \frac{{x\left( {\sqrt x  + 1} \right) - 2\sqrt x \left( {\sqrt x  + 1} \right) + 4\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  + 2} \right)\left( {x - 2\sqrt x  + 4} \right)}}\)

\( = \frac{{\left( {\sqrt x  + 1} \right)\left( {x - 2\sqrt x  + 4} \right)}}{{\left( {\sqrt x  + 2} \right)\left( {x - 2\sqrt x  + 4} \right)}}\)\( = \frac{{\sqrt x  + 1}}{{\sqrt x  + 2}}\)\( = \frac{{\sqrt x  + 2 - 1}}{{\sqrt x  + 2}}\)\( = 1 - \frac{1}{{\sqrt x  + 2}}\) (đpcm)

b) Với \(x = 64\) (thỏa mãn điều kiện) thay vào P ta có: \(P = 1 - \frac{1}{{\sqrt {64}  + 2}} = 1 - \frac{1}{{10}} = \frac{9}{{10}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"