Giải bài tập 10 trang 128 SGK Toán 9 tập 2 - Kết nối tri thức

2024-09-14 18:19:28

Đề bài

Cho tam giác ABC vuông tại B có góc \(\widehat A = {30^o},AB = 6cm\). Vẽ tia Bt sao cho \(\widehat {tBC} = {30^o}\), cắt tia AC ở D (C nằm giữa A và D).

a) Chứng minh tam giác ABD cân tại B.

b) Tính khoảng cách từ D đến đường thẳng AB.

Phương pháp giải - Xem chi tiết

a) + Tính được \(\widehat {DBA} = \widehat {DBC} + \widehat {CBA} = {120^o}\).

+ Tính được \(\widehat {BDA} = {30^o}\) nên tam giác ABD cân tại B.

b) + \(BD = AB = 6cm\).

+ Kẻ DE vuông góc với AB tại E. Khi đó, DE là khoảng cách từ D đến đường thẳng AB.

+ \(\widehat {DBE} = {180^o} - \widehat {DBA} = {60^o}\).

+ Tam giác BED vuông tại E nên \(ED = BD.\sin \widehat {DBE}\).

Lời giải chi tiết

a) \(\Delta \)ABC vuông tại B nên \(\widehat {CBA} = {90^o}\). Ta có: \(\widehat {DBA} = \widehat {DBC} + \widehat {CBA} = {30^o} + {90^o} = {120^o}\)

\(\Delta \)DBC có: \(\widehat {BDA} = {180^o} - \widehat {DBA} - \widehat A = {180^o} - {120^o} - {30^o} = {30^o}\). Do đó, \(\widehat {BDA} = \widehat A\) nên \(\Delta \)ABD cân tại B.

b) Vì \(\Delta \)ABD cân tại B nên \(BD = AB = 6cm\).

Kẻ DE vuông góc với AB tại E. Khi đó, DE là khoảng cách từ D đến đường thẳng AB.

Ta có: \(\widehat {DBE} = {180^o} - \widehat {DBA} = {180^o} - {120^o} = {60^o}\).

\(\Delta \)BED vuông tại E nên \(ED = BD.\sin \widehat {DBE} = 6.\sin {60^o} = 6.\frac{{\sqrt 3 }}{2} = 3\sqrt 3 \left( {cm} \right)\)

Vậy khoảng cách từ D đến đường thẳng AB bằng \(3\sqrt 3 \)cm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"