Giải bài tập 2 trang 21 SGK Toán 9 tập 1 - Chân trời sáng tạo

2024-09-14 18:19:50

Đề bài

Giải các hệ phương trình

a) \(\left\{ {\begin{array}{*{20}{c}}{4x + y = 2}\\{\frac{4}{3}x + \frac{1}{3}y = 1}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x - y\sqrt 2 = 0}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 3 + y = 2\sqrt 2 }\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{(x + y) + 2(x - y) = 5}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

Dựa vào các bước giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết

a) \(\left\{ {\begin{array}{*{20}{c}}{4x + y = 2}\\{\frac{4}{3}x + \frac{1}{3}y = 1}\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 2 - 4x}\\{\frac{4}{3}x + \frac{1}{3}\left( {2 - 4x} \right) = 1}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2 - 4x}\\{0x = \frac{1}{3}}\end{array}} \right.\end{array}\)

Phương trình 0x = \(\frac{1}{3}\) vô nghiệm.

Vậy hệ phương trình vô nghiệm.

b) \(\left\{ {\begin{array}{*{20}{c}}{x - y\sqrt 2 = 0}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{3x = 3}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{2 + y\sqrt 2 = 3}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y\sqrt 2 = 1}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = \frac{1}{{\sqrt 2 }}}\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là \(\left( {1;\frac{1}{{\sqrt 2 }}} \right)\).

c) \(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 3 + y = 2\sqrt 2 }\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

Nhân hai vế của phương trình thứ nhất với \(\sqrt 2 \), ta được

\(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 6 + y\sqrt 2 = 4}\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

Cộng từng vế 2 phương trình của hệ, ta được \(6\sqrt 6 x = 6\) , suy ra x = \(\frac{1}{{\sqrt 6 }}\).

Thay x = \(\frac{1}{{\sqrt 6 }}\) vào phương trình \(x\sqrt 6 - y\sqrt 2 = 2\) ta được \(1 - y\sqrt 2 = 2\). Do đó,

 y = \(\frac{{ - 1}}{{\sqrt 2 }}\).

Vậy hệ phương trình có nghiệm duy nhất là \(\left( {\frac{1}{{\sqrt 6 }};\frac{{ - 1}}{{\sqrt 2 }}} \right)\).

d) \(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{(x + y) + 2(x - y) = 5}\end{array}} \right.\)

Nhân hai vế phương trình thứ hai với 2, ta được

\(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{2(x + y) + 4(x - y) = 10}\end{array}} \right.\)

Trừ từng vế 2 phương trình của hệ, ta được – (x – y) = - 6 , suy ra (x – y) = 6 (1)

Thay x – y = 6 vào phương trình 2(x + y) + 3(x – y) = 4 ta được 2(x + y) + 18 = 4

Suy ra x + y = - 7 (2)

Từ (1) và (2) ta có hệ phương trình

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x + y = - 7}\\{x - y = 6}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{6 + y + y = - 7}\\{x = 6 + y}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = \frac{{ - 13}}{2}}\\{x = \frac{{ - 1}}{2}}\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là \(\left( {\frac{{ - 1}}{2};\frac{{ - 13}}{2}} \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"