HĐ1
Trả lời câu hỏi Hoạt động 1 trang 42 SGK Toán 9 Chân trời sáng tạo
Có hai khối bê tông hình lập phương A và B có thể tích lần lượt là 8 dm3 và 15 dm3 (Hình 1).
a) Tính độ dài cạnh của khối bê tông A.
b) Gọi x (dm) là độ dài cạnh của khối bê tông B. Thay ? bằng số thích hợp để có đẳng thức: x3 = ?
Phương pháp giải:
- Dựa vào công thức thể tích lập phương: V = cạnh.cạnh.cạnh
suy ra cạnh = \(\sqrt[3]{V}\)
- VB = x3
Lời giải chi tiết:
a) Độ dài cạnh của khối bê tông A là: \(\sqrt[3]{V} = \sqrt[3]{8} = 2\) dm
b) VB = x3 = 15.
TH1
Trả lời câu hỏi Thực hành 1 trang 43 SGK Toán 9 Chân trời sáng tạo
Tìm căn bậc ba của mỗi số sau:
a) -1
b) 64
c) – 0,064
d) \(\frac{1}{{27}}\)
Phương pháp giải:
Dựa vào VD1 trang 42 làm tương tự.
Lời giải chi tiết:
a) Ta có (-1)3 = 1, suy ra \(\sqrt[3]{{ - 1}}\) = - 1
b) Ta có 43 = 64, suy ra \(\sqrt[3]{{64}} = 4\)
c) Ta có (-0,4)3 = - 0,064, suy ra \(\sqrt[3]{{ - 0,064}} = - 0,4\)
d) Ta có \({\left( {\frac{1}{3}} \right)^3} = \frac{1}{{27}}\), suy ra \(\sqrt[3]{{\frac{1}{{27}}}} = \frac{1}{3}\).
TH2
Trả lời câu hỏi Thực hành 2 trang 43 SGK Toán 9 Chân trời sáng tạo
Tính giá trị của các biểu thức:
a) A = \(\sqrt[3]{{8000}} + \sqrt[3]{{0,125}}\)
b) B = \(\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\)
c) C = \({\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\)
Phương pháp giải:
Dựa vào phần c VD2 trang 43 làm tương tự.
Lời giải chi tiết:
a) A = \(\sqrt[3]{{8000}} + \sqrt[3]{{0,125}}\)
\(\begin{array}{l} = \sqrt[3]{{{{(20)}^3}}} + \sqrt[3]{{{{\left( {0,5} \right)}^3}}}\\ = 20 + 0,5\\ = 20,5\end{array}\)
b) B = \(\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\)
\(\begin{array}{l}\sqrt[3]{{{{12}^3}}} - \sqrt[3]{{{{( - 11)}^3}}}\\ = 12 - ( - 11)\\ = 23\end{array}\)
c) C = \({\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\)
\(\begin{array}{l}{\left( {\sqrt[3]{4}} \right)^3} + {\left( {\sqrt[3]{{ - 5}}} \right)^3}\\ = 4 - 5\\ = - 1\end{array}\)