Giải bài tập 6 trang 56 SGK Toán 9 tập 1 - Chân trời sáng tạo

2024-09-14 18:20:31

Đề bài

Chứng minh rằng:

a) \(\frac{{a\sqrt b  - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a  + \sqrt b }} = a - b\) với a > 0; b > 0

b) \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a  + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a  - 1}}} \right) = 1 - a\) với a \( \ge \) 0 và a \( \ne \)1

Phương pháp giải - Xem chi tiết

Phân tích xuất hiện nhân tử chung, tính toán vế trái rồi tính đưa về dạng vế phải.

Lời giải chi tiết

a) \(\frac{{a\sqrt b  - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a  + \sqrt b }} = a - b\) với a > 0; b > 0

Xét vế trái ta có:

\(\frac{{a\sqrt b  - b\sqrt a }}{{\sqrt {ab} }}.\left( {\sqrt a  + \sqrt b } \right) = \frac{{\left( {a\sqrt b  - b\sqrt a } \right)\left( {\sqrt a  + \sqrt b } \right)}}{{\sqrt {ab} }}\)

\( = \frac{{a\sqrt {ab}  + ab - ab - b\sqrt {ab} }}{{\sqrt {ab} }} = \frac{{\left( {a - b} \right)\sqrt {ab} }}{{\sqrt {ab} }} = a - b\) = VP

b) \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a  + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a  - 1}}} \right) = 1 - a\) với a \( \ge \) 0 và a \( \ne \)1

Xét vế trái ta có:

\(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a  + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a  - 1}}} \right) = \left( {1 + \frac{{\sqrt a \left( {\sqrt a  + 1} \right)}}{{\sqrt a  + 1}}} \right)\left( {1 - \frac{{\sqrt a \left( {\sqrt a  - 1} \right)}}{{\sqrt a  - 1}}} \right)\)

\( = \left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right) = 1 - {\left( {\sqrt a } \right)^2} = 1 - a\) =  VP.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"