Giải bài tập 14 trang 105 SGK Toán 9 tập 1 - Chân trời sáng tạo

2024-09-14 18:22:12

Đề bài

Trên đường thẳng xy, lấy lần lượt ba điểm A, B, C sao cho AB > BC. Vẽ đường tròn (O) đường kính AB và đường tròn (O’) đường kính BC.

a) Chứng minh rằng hai đường tròn (O) và (O’) tiếp xúc ngoài B.

b) Gọi H là trung điểm AC. Vẽ dây DE của (O) vuông góc với AC tại H. Chứng minh tứ giác ADCE là hình thoi.

c) DC cắt đường tròn (O’) tại F. Chứng minh rằng ba điểm F, B, E thẳng hàng.

d) Chứng minh rằng HF là tiếp tuyến của đường tròn (O’).

Phương pháp giải - Xem chi tiết

Đọc kĩ dữ liệu để vẽ hình.

a) Dựa vào: Vị trí tương đối của hai đường tròn để chứng minh

b) Chứng minh tứ giác ADCE là hình bình hành có ACDE nên ADCE là hình thoi.

c) Chứng minh EB và FB trùng nhau nên ba điểm F, B, E thẳng hàng.

d) Chứng minh HFO’F và F thuộc (O’) nên HF là tiếp tuyến của đường tròn (O’).

Lời giải chi tiết

a) Ta có OO’ = OB + BO’ (d = R + R’)

Do đó đường tròn (O) và đường tròn (O’) tiếp xúc ngoài.

b) Ta có ABDE (gt) suy ra H là trung điểm của DE

Mà H lại là trung điểm của AC (g)

Do đó tứ giác ADCE là hình bình hành.

Mặt khác, ACDE (gt)

Vậy tứ giác ADCE là hình thoi.

c) Tam giác EAB nội tiếp đường tròn đường kính AB (gt)

Suy ra tam giác EAB vuông tại E hay EBAE.

Ta có AE // CD (tứ giác ADCE là hình thoi) và EBAE

Nên EBCD.

Ta có EBCD và FBCD suy ra EB và FB trùng nhau.

Vậy ba điểm F, B, E thẳng hàng.

d) Tam giác FDE vuông tại F, FH là đường trung tuyến.

Suy ra FH = DH nên tam giác HFD cân tại H.

Do đó HFD^=HDC^

Mặt khác, O’F = O’C suy ra tam giác O’FC cân tại O’

Suy ra OFC^=HCD^

HDC^=HCD^HDC^+HCD^=90o (tam giác HCD vuông tại H)

Nên HFD^+OFC^=90o

Do đó HFO^=180o(HFD^+OFC^)=180o90o=90o

Ta có HFO’F, F thuộc đường tròn (O’).

Vậy HF là tiếp tuyến của đường tròn (O’).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"