Giải bài tập 1 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo

2024-09-14 18:22:35

Đề bài

Giải các phương trình:

a) \(5{x^2} + 7x = 0\)

b) \(5{x^2} - 15 = 0\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp đặt nhân tử chung và quy tắc chuyển vế để đưa về dạng phương trình tích.

Lời giải chi tiết

a) \(5{x^2} + 7x = 0\)

\(\begin{array}{l}x(5x + 7) = 0\\\left[ {\begin{array}{*{20}{c}}{x = 0}\\{5x + 7 = 0}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \frac{{ - 7}}{5}}\end{array}} \right.\end{array}\)

Vậy phương trình có 2 nghiệm là x = 0 và x = \(\frac{{ - 7}}{5}\).

b) \(5{x^2} - 15 = 0\)

\(\begin{array}{l}5{x^2} = 15\\{x^2} = 3\\x =  \pm \sqrt 3 \end{array}\)

Vậy phương trình có 2 nghiệm là \(x =  \pm \sqrt 3 \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"