Đề bài
Cho phương trình \(2{x^2} - 7x + 6 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:
A = \(\left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right) - {x_1}^2{x_2}^2\)
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu phương trình bậc hai \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm \({x_1},{x_2}\) thì tổng và tích của hai nghiệm đó là:
S = \({x_1} + {x_2} = - \frac{b}{a}\); P = \({x_1}.{x_2} = \frac{c}{a}\)
Lời giải chi tiết
Phương trình \(2{x^2} - 7x + 6 = 0\) có \(\Delta = {( - 7)^2} - 4.2.6 = 1 > 0\) nên nó có hai nghiệm phân biệt \({x_1},{x_2}\).
Theo định lí Viète, ta có:
\({x_1} + {x_2} = \frac{7}{2}\);\({x_1}.{x_2} = \frac{c}{a} = 3\)
Ta có:
\(\begin{array}{l}A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right) - {x_1}^2{x_2}^2\\ = {x_1}{x_2} + 2{x_1}^2 + 2{x_2}^2 + 4{x_1}{x_2} - {x_1}^2{x_2}^2\\ = {x_1}{x_2} + 2\left( {{x_1}^2 + {x_2}^2 + 2{x_1}{x_2}} \right) - {x_1}^2{x_2}^2\\ = {x_1}{x_2} + 2{\left( {{x_1} + {x_2}} \right)^2} - {\left( {{x_1}{x_2}} \right)^2}\\ = 3 + 2.{\left( {\frac{7}{2}} \right)^2} - {3^2}\\ = 3 + \frac{{49}}{2} - 9\\ = \frac{{37}}{2}\end{array}\)