Giải bài tập 12 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

2024-09-14 18:22:39

Đề bài

Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.

a) \(14{x^2} - 13x - 27 = 0\)

b) \(5,4{x^2} + 8x + 2,6 = 0\)

c) \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)

d) \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5  = 0\)

Phương pháp giải - Xem chi tiết

Dựa vào: Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a + b + c = 0 thì phương trình có một nghiệm là \({x_1} = 1\) , nghiệm còn lại là \({x_2} = \frac{c}{a}\).

Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a - b + c = 0 thì phương trình có một nghiệm là \({x_1} =  - 1\) , nghiệm còn lại là \({x_2} =  - \frac{c}{a}\).

Lời giải chi tiết

a) Phương trình \(14{x^2} - 13x - 27 = 0\)có a - b + c = 14 – (-13) - 27= 0.

Vậy phương trình có hai nghiệm là \({x_1} =  - 1\); \({x_2} =  - \frac{c}{a} = \frac{{27}}{{14}}\).

b) Phương trình \(5,4{x^2} + 8x + 2,6 = 0\) có a - b + c = 5,4 - 8 + 2,6 = 0.

Vậy phương trình có hai nghiệm là \({x_1} =  - 1\); \({x_2} =  - \frac{c}{a} =  - \frac{{2,6}}{{5,4}} =  - \frac{{13}}{{27}}\).

c) Phương trình \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)có a + b + c = \(\frac{2}{3} + 2 - \frac{8}{3} = 0\).

Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} =  - \frac{8}{3}:\frac{2}{3} =  - 4\).

d) Phương trình \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5  = 0\) có a + b + c = \(3 - (3 + \sqrt 5 ) + \sqrt 5  = 0\).

Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = \frac{{\sqrt 5 }}{3}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"