Giải bài tập 5 trang 74 SGK Toán 9 tập 2 - Chân trời sáng tạo

2024-09-14 18:23:46

Đề bài

Từ một điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MBC và tiếp tuyến Mt tiếp xúc với (O) tại A. Gọi I là trung điểm của dây BC. Chứng minh AMIO là một tứ giác nội tiếp.

Phương pháp giải - Xem chi tiết

-  Đọc kĩ dữ liệu để vẽ hình.

-  Dựa vào: Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng 180o.

Lời giải chi tiết

O là trung điểm BC

Và OI cắt BC tại O

Suy ra OI \( \bot \) BC tại O (theo định lí đường kính – dây cung)

Suy ra \(\widehat {IOM} = {90^o}\)

Xét tứ giác AMIO ta có:

\(\widehat {IOM} + \widehat {IAM} = {90^o} + {90^o} = {180^o}\)

 Do đó tứ giác AMIO nội tiếp.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"