Giải mục 1 trang 75, 76, 77 SGK Toán 9 tập 2 - Chân trời sáng tạo

2024-09-14 18:24:04

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 75 SGK Toán 9 Chân trời sáng tạo

Có nhận xét gì về các cạnh và góc của mỗi đa giác sau?

Phương pháp giải:

Nhìn hình nhận xét.

Lời giải chi tiết:

- Độ dài các cạnh của mỗi đa giác là bằng nhau.

- Số đo góc của mỗi đa giác là bằng nhau.


TH1

Trả lời câu hỏi Thực hành 1 trang 77 SGK Toán 9 Chân trời sáng tạo

Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung \(\overset\frown{MN},\overset\frown{NP},\overset\frown{PQ},\overset\frown{QR},\overset\frown{RM}\) bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?

Phương pháp giải:

-  Đọc kĩ dữ kiện đề bài để vẽ hình

-  Dựa vào: Đa giác lồi có các cạnh bằng nhau và các góc bằng nhau gọi là đa giác đều.

Lời giải chi tiết:

Các cung \(\overset\frown{MN}, \overset\frown{NP}, \overset\frown{PQ}, \overset\frown{QR}, \overset\frown{RM}\) chia đường tròn (O; R) thành 6 cung có số đo bằng nhau, suy ra số đo mỗi cung là 360o : 5 = 72o.

Ta có \(\widehat {MON}\) là góc nội tiếp chắn cung MN suy ra \(\widehat {MON}\) = 72o .

Xét \(\Delta \)MON, có: OM = ON = R suy ra \(\Delta \) MON cân tại O.

Suy ra \(\widehat {OMN} = \widehat {ONM}\) (tính chất tam giác cân)

Suy ra \(\widehat {OMN} = \widehat {ONM} = \frac{{{{180}^o} - \widehat {MON}}}{2} = {54^o}\).

Tương tự, ta có \(\widehat {OPN} = \widehat {ONP} = {54^o}\).

Suy ra \(\widehat {MPN} = \widehat {ONM} + \widehat {ONP} = {54^o} + {54^o} = {108^o}\).

Xét \(\Delta \) OMN và \(\Delta \) ONP có:

 \(\widehat {MON} = \widehat {NOP}\);

 OM = OP;

 ON chung.

Suy ra  \(\Delta \) OMN = \(\Delta \) ONP (c – g – c).

Do đó, MN = NP (hai cạnh tương ứng).

Chứng minh tương tự ta thu được ngũ giác MNPQR có các cạnh bằng nhau và các góc đều bằng nhau ( = 108o).

Vậy MNPQR là một đa giác đều.


VD1

Trả lời câu hỏi Vận dụng 1 trang 77 SGK Toán 9 Chân trời sáng tạo

Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA. Đa giác MNPQRS có là đa giác đều không? Vì sao?

Phương pháp giải:

-  Đọc kĩ dữ kiện đề bài để vẽ hình

-  Dựa vào: Đa giác lồi có các cạnh bằng nhau và các góc bằng nhau gọi là đa giác đều.

Lời giải chi tiết:

Do ABCDEF là lục giác đều nên:

\(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E = \widehat F = {120^o}\).

- AB = BC = CD = DE = EF = FA.

Vì M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA.

Suy ra AM = MB = BN = NC = CP = PD = DQ = QE = ER = RF = FS = SA.

Xét \(\Delta \) SAM và \(\Delta \) MBN có:

\(\widehat A = \widehat B\) (chứng minh trên);

 AM = BN (chứng minh trên);

 SA = MB (chứng minh trên).

Suy ra \(\Delta \) SAM = \(\Delta \) MBN  (c – g – c).

Do đó, SM = MN (hai cạnh tương ứng).

Chứng minh tương tự ta được: MN = NP, NP = PQ, QR = RS, RS = SM (1).

Vì AS = AM (chứng minh trên) suy ra \(\Delta \) ASM cân tại A.

suy ra \(\widehat {ASM} = \widehat {AMS}\) (tính chất tam giác cân)

Nên \(\widehat {ASM} = \widehat {AMS} = \frac{{{{180}^o} - \widehat A}}{2} = {30^o}\) (tổng 3 góc trong của tam giác).

Tương tự ta thu được:

\(\widehat {BMN} = \widehat {BNM} = \frac{{{{180}^o} - \widehat B}}{2} = 30\);

\(\widehat {CNP} = \widehat {CPN} = \frac{{{{180}^o} - \widehat C}}{2} = {30^o}\);

\(\widehat {DPQ} = \widehat {DQP} = \frac{{{{180}^o} - \widehat D}}{2} = {30^o}\);

\(\widehat {EQR} = \widehat {ERQ} = \frac{{{{180}^o} - \widehat E}}{2} = {30^o}\);.

\(\widehat {FRS} = \widehat {FSR} = \frac{{{{180}^o} - \widehat F}}{2} = {30^o}\)

Ta có: 

\(\widehat {RSM} = {180^o} - \widehat {FRS} - \widehat {ASM} = {180^o} - {30^o} - {30^o} = {120^o}\)

Tương tự, ta được: 

\(\widehat {AMN} = \widehat {MNP} = \widehat {NQP} = \widehat {PQR} = \widehat {QRS} = {120^o}\).   (2)

Từ (1) và (2), suy ra MNPQRS là đa giác đều.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"