Giải bài tập 10 trang 82 SGK Toán 9 tập 2 - Chân trời sáng tạo

2024-09-14 18:24:07

Đề bài

Cho tam giác nhọn ABC có đường cao AH (H \( \in \) BC) và nội tiếp đường tròn tâm O có đường kính AM (hình 6). Chứng minh \(\widehat {OAC} = \widehat {BAH}\).

Phương pháp giải - Xem chi tiết

Dựa vào góc nội tiếp chắn nửa đường tròn bằng 90o để chứng minh\(\widehat {OAC} + \widehat {OCM} = {90^o}\).

Theo hình vẽ ta chứng minh \(\widehat {OAC} = \widehat {OCA} = {90^o} - \widehat {OCM} = \widehat {BAH}\)

Lời giải chi tiết

OA = OC = R nên \(\Delta \)OAC cân tại O.

Vì \(\widehat {ACM}\) là góc nội tiếp chắn cung AM, AM là đường kính đường tròn (O).

Suy ra \(\widehat {ACM} = {90^o}\) hay \(\widehat {OAC} + \widehat {OCM} = {90^o}\)

suy ra \(\widehat {OAC} = \widehat {OCA} = {90^o} - \widehat {OCM}\) (do OC = OM = R nên tam giác OMC cân tại O suy ra \(\widehat {OCM} = \widehat {OMC}\)).

= \({90^o} - \widehat {OMC}\) (do \(\widehat {OMC}\) và \(\widehat B\) cùng là góc nội tiếp chắn cung AC nhỏ)

= \(\widehat {BAH}\) (tổng ba góc trong của tam giác).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"